
University of Virginia cs3120: Discrete Mathematics and Theory 2 14 February 2023

Problem Set 4
Due: 9:59pm, Monday, 20 February

This problem set focuses on understanding the asymptotic notations, syntactic sugar (Chapter 4), and the circuit
complexity and the size hierarchy theorem (Chapter 5 of TCS).

You should complete the assignment by writing your answers in the ps4.tex LaTeX template. There is no Jupyter
part for this assignment.

Collaboration Policy: You may discuss the problems with anyone you want. You are permitted to
use any resources you find for this assignment other than solutions from previous cs3102/cs3120
courses. You should write up your own solutions and understand everything in them, and submit
only your own work. You should note in the Collaborators and Resources box below the people
you collaborated with and any external resources you used (you do not need to list resources you
used for help with LaTeX).

Collaborators and Resources: TODO: replace this with your collaborators and resources (if you
did not have any, replace this with None)

To do the LaTeX part of this assignment, follow the same directions as previous problem sets. The URL for this
template is: https://www.overleaf.com/read/hsxfrxnsvyfw

Before submitting your ps4.pdf file, also remember to:

– List your collaborators and resources, replacing the TODO in \collaborators{TODO: replace ...}
with your collaborators and resources. (Remember to update this before submitting if you work with more people.)

– Replace the second line in ps4.tex, \usepackage{uvatoc} with \usepackage[response]{uvatoc}
so the directions do not appear in your final PDF.

https://www.overleaf.com/read/hsxfrxnsvyfw


cs3120 Spring 2023 2 Problem Set 4

Asymptotic Operators

For all of these questions (and throughout cs3120), you should use the formal definitions of O, Θ, and Ω as we
defined in class this week. These are similar to the book’s definitions in Section 1.4.8, but unlike the books definitions
and usage where the notations are used with "=" symbols, ideally we want you to think of them precisely as ways to
describe sets of functions. Using those definitions carefully will help you solve these problems well.

Soft-O

Logarithms grow so slowly, they are practically “constants” — log2 1 000 000 000 000 < 40. So, for any size
problem we could compute on a real machine, theoreticians (and students who don’t like to worry about manipulating
logarithms) shouldn’t waste their time worrying about logarithmic factors. Indeed, even polynomials on logarithms
(i.e., ak(log n)k for any constant k) grow so slowly to usually be irrelevant.

For this reason, we often use the “Soft-O” notation, Õ:

Definition 1 (Õ) A function f(n) : N → R is in Õ(g(n)) for any function g(n) : N → R if and only if f(n) ∈
O(g(n) · logk g(n)) for some k ∈ N.

(Note: for convenience, we write logk x to mean (log x)k. Also, we have seen the (constant) base of a log doesn’t
matter within our asymptotic operators, but if it is disturbing to have a log with uncertain base, it is fine to assume it
is base 2.)

Problem 1 For each sub-problem, indicate if the statement is true or false and support your answer with a convincing
argument.

(a) n2 log n3 ∈ Õ(n2)

(b) 2.0001n ∈ Õ(2n)

(c) maximum number of comparison operations needed to sort a list of n items ∈ Õ(n)

(Hint: by understanding the definition of Õ above, you should realize that one way to prove a function is in a Õ set is
to choose a value for k used in the definition, but to disprove inclusion in Õ you need to show that there is no k that
works.)

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 3 Problem Set 4

Little-o

Another useful notation is “little-o” which is designed to capture the notion that a function g grows much faster than
f :

Definition 2 (o) A function f(n) : N → R is in o(g(n)) for any function g(n) : N → R if and only if for every
positive constant c, there exists an n0 ∈ N such that:

∀n > n0.f(n) ≤ cg(n).

Problem 2 Goldilocks and the Three Os

(a) Prove that for any function f , f /∈ o(f).

(b) Prove that n ∈ o(n log n).

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 4 Problem Set 4

Counting Circuits and Functions

Problem 3 Equal to Constant Function (TCS Exercise 5.3)

For every k ∈ N and x′ ∈ {0, 1}k, show that there is an O(k) line NAND-CIRC program that computes the function
EQUALSx′ : {0, 1}k → {0, 1} that on input x ∈ {0, 1}k outputs 1 if and only if x = x′.

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 5 Problem Set 4

Problem 4 Counting lower bound for multibit functions (TCS Exercise 5.4)

Prove that there exists a number δ > 0 such that for every n, m there exists a function f : {0, 1}n → {0, 1}m that
requires at least δm · 2n/n NAND gates to compute. (If you are stuck, see this exercise in the book for a hint.)

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 6 Problem Set 4

Problem 5 Random Functions are Hard (TCS Exercise 5.8)

Suppose n > 1000 and that we choose a function F : {0, 1}n → {0, 1} at random, choosing for every x ∈ {0, 1}n

the value F (x) to be the result of tossing an independent unbiased coin. Prove that the probability that there is a
2n/(1000n) line program that computes F is at most 2−100. (If you are stuck, see this exercise in the book for a
hint.)

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 7 Problem Set 4

Problem 6 Understanding the Size Hierarchy Proof

The proof of the Size Hierarchy Theorem (Theorem 5.5 in the book, and in class this week) defined a sequence of
functions, f0, f1, . . .:

fi(x) =
{

f∗(x) lex(x) < i

0 otherwise

where f∗ is some hard function, which we don’t need to define but know must exist for sufficiently large n because of
the number of functions in SIZE(s).

(a) Prove that when f∗(xi) = 0, fi+1 = fi where lex(xi) = i. That is, the two functions denoted by fi+1 and fi are
actually the same function.

(b) Explain why this is not a problem for the proof.

Answer:

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 8 Problem Set 4

Problem 7 Finer Hierarchy

The Size Hierarchy Theorem says that for every sufficiently large n and 10n < s < 0.1 · 2n/n, SIZEn(s) ⊊
SIZEn(s + 10n) (where SIZEn(s) was the set of all n-input boolean functions that can be implemented with s or
fewer NAND gates). The need for the 10n, means this does not tell us if, for a given s, SIZEn(s) ⊊ SIZEn(s+1).
As computer scientists, we should be a bit bothered by this. (Make sure you understand what the proof method used
to show the theorem resulted in this 10n term.) Prove that SIZE2(1) ⊊ SIZE2(2).

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 9 Problem Set 4

This is the end of the LaTeX problems for PS4. Remember to follow the last step in the directions
on the first page to prepare your PDF for submission.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans

