
Figure 2.1: Our basic notion of computation is some
process that maps an input to an output

2
Computation and Representation

“The alphabet (sic) was a great invention, which enabled
men (sic) to store and to learn with little effort what
others had learned the hard way – that is, to learn from
books rather than from direct, possibly painful, contact
with the real world.”, B.F. Skinner

“The name of the song is called ‘HADDOCK’S EYES.”’
[said the Knight]
“Oh, that’s the name of the song, is it?” Alice said,
trying to feel interested.
“No, you don’t understand,” the Knight said, looking
a little vexed. “That’s what the name is CALLED. The
name really is ‘THE AGED AGEDMAN.”’
“Then I ought to have said ‘That’s what the SONG is
called’?” Alice corrected herself.
“No, you oughtn’t: that’s quite another thing! The
SONG is called ‘WAYS ANDMEANS’: but that’s only
what it’s CALLED, you know!”
“Well, what IS the song, then?” said Alice, who was
by this time completely bewildered.
“I was coming to that,” the Knight said. “The song
really IS ‘A-SITTING ON A GATE’: and the tune’s my
own invention.”
Lewis Carroll, Through the looking glass

To a first approximation, computation is a process that maps an input
to an output.

When discussing computation, it is essential to separate the ques-
tion of what is the task we need to perform (i.e., the specification) from
the question of how we achieve this task (i.e., the implementation).
For example, as we’ve seen, there is more than one way to achieve the
computational task of computing the product of two integers.

Compiled on 8.29.2019 11:08

Learning Objectives:
• Distinguish between specification and

implementation, or equivalently between
mathematical functions and
algorithms/programs.

• Representing an object as a string (often of
zeroes and ones).

• Examples of representations for common
objects such as numbers, vectors, lists, graphs.

• Prefix-free representations.
• Cantor’s Theorem: The real numbers cannot

be represented exactly as finite strings.

84 introduction to theoretical computer science

Figure 2.2: We represent numbers, texts, images, net-
works and many other objects using strings of zeroes
and ones. Writing the zeroes and ones themselves in
green font over a black background is optional.

In this chapter we focus on the what part, namely defining compu-
tational tasks. For starters, we need to define the inputs and outputs.
Capturing all the potential inputs and outputs that we might ever
want to compute on seems challenging, since computation today is
applied to a wide variety of objects. We do not compute merely on
numbers, but also on texts, images, videos, connection graphs of social
networks, MRI scans, gene data, and even other programs. We will
represent all these objects as strings of zeroes and ones, that is objects
such as 0011101 or 1011 or any other finite list of 1’s and 0’s. (This
choice is for convenience: there is nothing “holy” about zeroes and
ones, and we could have used any other finite collection of symbols.)

Today, we are so used to the notion of digital representation that
we are not surprised by the existence of such an encoding. But it is
actually a deep insight with significant implications. Many animals
can convey a particular fear or desire, but what is unique about hu-
mans is language: we use a finite collection of basic symbols to describe
a potentially unlimited range of experiences. Language allows trans-
mission of information over both time and space and enables soci-
eties that span a great many people and accumulate a body of shared
knowledge over time.

Over the last several decades, we have seen a revolution in what we
can represent and convey in digital form. We can capture experiences
with almost perfect fidelity, and disseminate it essentially instanta-
neously to an unlimited audience. Moreover, once information is in
digital form, we can compute over it, and gain insights from data that
were not accessible in prior times. At the heart of this revolution is the
simple but profound observation that we can represent an unbounded
variety of objects using a finite set of symbols (and in fact using only
the two symbols 0 and 1).

In later chapters, we will typically take such representations for
granted, and hence use expressions such as “program 𝑃 takes 𝑥 as
input” when 𝑥 might be a number, a vector, a graph, or any other
object, when we really mean that 𝑃 takes as input the representation of
𝑥 as a binary string. However, in this chapter we will dwell a bit more
on how we can construct such representations.

2.1 DEFINING REPRESENTATIONS

Every time we store numbers, images, sounds, databases, or other ob-
jects on a computer, what we actually store in the computer’s memory
is the representation of these objects. Moreover, the idea of representa-
tion is not restricted to digital computers. When we write down text or
make a drawing we are representing ideas or experiences as sequences
of symbols (which might as well be strings of zeroes and ones). Even

computation and representation 85

1 We could just as well used the reverse order and
represent 35 as the string 110001. Similarly, we could
have just as well used the empty string "" to represent
0. Such low level choices do not make a difference for
us, though they do matter in computing practice, see
the bibliographical notes Section 2.7.

Figure 2.3: Representing each one the digits
0, 1, 2, … , 9 as a 12 × 8 bitmap image, which can be
thought of as a string in {0, 1}96. Using this scheme
we can represent a natural number 𝑥 of 𝑛 decimal
digits as a string in {0, 1}96𝑛. Image taken from blog
post of A. C. Andersen.

our brain does not store the actual sensory inputs we experience, but
rather only a representation of them.

To use objects such as numbers, images, graphs, or others as inputs
for computation, we need to define precisely how to represent these
objects as binary strings. A representation scheme is a way to map an ob-
ject 𝑥 to a binary string 𝐸(𝑥) ∈ {0, 1}∗. For example, a representation
scheme for natural numbers is a function 𝐸 ∶ ℕ → {0, 1}∗. Of course,
we cannot merely represent all numbers as the string “0011” (for ex-
ample). A minimal requirement is that if two numbers 𝑥 and 𝑥′ are
different then they would be represented by different strings. Another
way to say this is that we require the encoding function 𝐸 to be one to
one.

2.1.1 Representing natural numbers
We now show how we can represent natural numbers as binary
strings. Over the years people have represented numbers in a variety
of ways, including Roman numerals, tally marks, our own Hindu-
Arabic decimal system, and many others. We can use any one of
those as well as many others to represent a number as a string (see
Fig. 2.3). However, for the sake of concreteness, we use the binary
basis as our default representation of natural numbers as strings.
For example, we represent the number six as the string 110 since
1 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20 = 6, and similarly we represent the number
thirty-five as the string 𝑦 = 100011 which satisfies ∑5

𝑖=0 𝑦𝑖 ⋅ 2|𝑦|−𝑖 = 35.1
Some more examples are given in the table below.

Table 2.1: Representing numbers in the binary basis. The lefthand
column contains representations of natural numbers in the deci-
mal basis, while the righthand column contains representations
of the same numbers in the binary basis.

Number (decimal representation) Number (binary representation)

0 0
1 1
2 10
5 101
16 10000
40 101000
53 110101
389 110000101
3750 111010100110

If 𝑛 is even, then the least significant digit of 𝑛’s binary representa-
tion is 0, while if 𝑛 is odd then this digit equals 1. Just like the number

http://blog.andersen.im/2010/12/autonomous-neural-development-and-pruning/
http://blog.andersen.im/2010/12/autonomous-neural-development-and-pruning/

86 introduction to theoretical computer science

⌊𝑛/10⌋ corresponds to “chopping off” the least significant decimal
digit (e.g., ⌊457/10⌋ = ⌊45.7⌋ = 45), the number ⌊𝑛/2⌋ corresponds
to the “chopping off” the least significant binary digit. Hence the bi-
nary representation can be formally defined as the following function
𝑁𝑡𝑆 ∶ ℕ → {0, 1}∗ (𝑁𝑡𝑆 stands for “natural numbers to strings”):

𝑁𝑡𝑆(𝑛) =
⎧{{
⎨{{⎩

0 𝑛 = 0
1 𝑛 = 1
𝑁𝑡𝑆(⌊𝑛/2⌋)𝑝𝑎𝑟𝑖𝑡𝑦(𝑛) 𝑛 > 1

(2.1)

where 𝑝𝑎𝑟𝑖𝑡𝑦 ∶ ℕ → {0, 1} is the function defined as 𝑝𝑎𝑟𝑖𝑡𝑦(𝑛) = 0
if 𝑛 is even and 𝑝𝑎𝑟𝑖𝑡𝑦(𝑛) = 1 if 𝑛 is odd, and as usual, for strings
𝑥, 𝑦 ∈ {0, 1}∗, 𝑥𝑦 denotes the concatenation of 𝑥 and 𝑦. The function
𝑁𝑡𝑆 is defined recursively: for every 𝑛 > 0 we define 𝑟𝑒𝑝(𝑛) in terms
of the representation of the smaller number ⌊𝑛/2⌋. It is also possible to
define 𝑁𝑡𝑆 non-recursively, see Exercise 2.2.

Throughout most of this book, the particular choices of repre-
sentation of numbers as binary strings would not matter much, we
just need to know that such a representation exists. In fact, for most
purposes, we can even use the simpler representation of mapping a
natural number 𝑛 to the length-𝑛 all-zero string 0𝑛.

R
Remark 2.1 — Binary representation in python (optional).
We can implement the binary representation in Python
as follows:

from math import floor, log
def NtS(n): # natural numbers to strings

if n<1: return ""
return NtS(floor(n/2))+str(n % 2)

print(NtS(236))
11101100

print(NtS(19))
10011

We can also use Python to implement the inverse
transformation, mapping a string back to the natural
number it represents.

def StN(x):# String to number
k = len(x)-1
return sum(int(x[i])*(2**(k-i)) for i in

range(k+1))↪

print(StN(NtS(236)))
236

computation and representation 87

2 While the Babylonians already invented a positional
system much earlier, the decimal positional system
we use today was invented by Indian mathematicians
around the third century. It was taken up by Arab
mathematicians in the 8th century. It was mainly
introduced to Europe in the 1202 book “Liber Abaci”
by Leonardo of Pisa, also known as Fibonacci, but did
not displace Roman numerals in common usage until
the 15th century.

R
Remark 2.2 — Programming examples. In this book,
we sometimes use code examples as in Remark 2.1.
The point is always to emphasize that certain com-
putations can be achieved concretely, rather than
illustrating the features of Python or any other pro-
gramming language. Indeed, one of the messages of
this book is that all programming languages are in
a certain precise sense equivalent to one another, and
hence we could have just as well used JavaScript, C,
COBOL, Visual Basic or even BrainF*ck. This book
is not about programming, and it is absolutely OK if
you are not familiar with Python or do not follow code
examples such as those in Remark 2.1.

2.1.2 Meaning of representations (discussion)
It is natural for us to think of 236 as the “actual” number, and of
11101100 as “merely” its representation. However, for most Euro-
peans in the middle ages CCXXXVI would be the “actual” number and
236 (if they have even heard about it) would be the weird Hindu-
Arabic positional representation.2 When our AI robot overlords ma-
terialize, they will probably think of 11101100 as the “actual” number
and of 236 as “merely” a representation that they need to use when
they give commands to humans.

So what is the “actual” number? This is a question that philoso-
phers of mathematics have pondered over throughout history. Plato
argued that mathematical objects exist in some ideal sphere of exis-
tence (that to a certain extent is more “real” than the world we per-
ceive via our senses, as this latter world is merely the shadow of this
ideal sphere). In Plato’s vision, the symbols 236 are merely notation
for some ideal object, that, in homage to the late musician, we can
refer to as “the number commonly represented by 236”.

The Austrian philosopher Ludwig Wittgenstein, on the other hand,
argued that mathematical objects do not exist at all, and the only
things that exist are the actual marks on paper that make up 236,
00110111 or CCXXXVI. In Wittgenstein’s view, mathematics is merely
about formal manipulation of symbols that do not have any inherent
meaning. You can think of the “actual” number as (somewhat recur-
sively) “that thing which is common to 236, 00110111 and CCXXXVI

and all other past and future representations that are meant to capture
the same object”.

While reading this book, you are free to choose your own phi-
losophy of mathematics, as long as you maintain the distinction be-
tween the mathematical objects themselves and the various particular

https://goo.gl/LKKNFK
https://goo.gl/b93h83

88 introduction to theoretical computer science

choices of representing them, whether as splotches of ink, pixels on a
screen, zeroes and one, or any other form.

2.2 REPRESENTATIONS BEYOND NATURAL NUMBERS

We have seen that natural numbers can be represented as binary
strings. We now show that the same is true for other types of objects,
including (potentially negative) integers, rational numbers, vectors,
lists, graphs and many others. In many instances, choosing the “right”
string representation for a piece of data is highly nontrivial, and find-
ing the “best” one (e.g., most compact, best fidelity, most efficiently
manipulable, robust to errors, most informative features, etc.) is the
object of intense research. But for now, we focus on presenting some
simple representations for various objects that we would like to use as
inputs and outputs for computation.

2.2.1 Representing (potentially negative) integers
Since we can represent natural numbers as strings, we can
represent the full set of integers (i.e., members of the set
ℤ = {… , −3, −2, −1, 0, +1, +2, +3, …}) by adding one more bit
that represents the sign. To represent a (potentially negative) number
𝑚, we prepend to the representation of the natural number |𝑚| a bit 𝜎
that equals 0 if 𝑚 ≥ 0 and equals 1 if 𝑚 < 0. Formally, we define the
function 𝑍𝑡𝑆 ∶ ℤ → {0, 1}∗ as follows

𝑍𝑡𝑆(𝑚) =
⎧{
⎨{⎩

0 𝑁𝑡𝑆(𝑚) 𝑚 ≥ 0
1 𝑁𝑡𝑆(−𝑚) 𝑚 < 0

(2.2)

where 𝑁𝑡𝑆 is defined as in (2.1).
While the encoding function of a representation needs to be one

to one, it does not have to be onto. For example, in the representation
above there is no number that is represented by the empty string
but it is still a fine representation, since every integer is represented
uniquely by some string.

R
Remark 2.3 — Interpretation and context. Given a string
𝑦 ∈ {0, 1}∗, how do we know if it’s “supposed” to
represent a (nonnegative) natural number or a (po-
tentially negative) integer? For that matter, even if
we know 𝑦 is “supposed” to be an integer, how do
we know what representation scheme it uses? The
short answer is that we do not necessarily know this
information, unless it is supplied from the context. (In
programming languages, the compiler or interpreter
determines the representation of the sequence of bits
corresponding to a variable based on the variable’s
type.) We can treat the same string 𝑦 as representing a

computation and representation 89

Figure 2.4: In the two’s complement representation
we represent a potentially negative integer 𝑘 ∈
{−2𝑛, … , 2𝑛 − 1} as an 𝑛 + 1 length string using the
binary representation of the integer 𝑘 mod 2𝑛+1. On
the lefthand side: this representation for 𝑛 = 3 (the
red integers are the numbers being represented by
the blue binary strings). If a microprocessor does not
check for overflows, adding the two positive numbers
6 and 5 might result in the negative number −5 (since
−5 mod 16 = 11. The righthand side is a C program
that will on some 32 bit architecture print a negative
number after adding two positive numbers. (Integer
overflow in C is considered undefined behavior which
means the result of this program, including whether
it runs or crashes, could differ depending on the
architecture, compiler, and even compiler options and
version.)

natural number, an integer, a piece of text, an image,
or a green gremlin. Whenever we say a sentence such
as “let 𝑛 be the number represented by the string 𝑦,”
we will assume that we are fixing some canonical rep-
resentation scheme such as the ones above. The choice
of the particular representation scheme will rarely
matter, except that we want to make sure to stick with
the same one for consistency.

2.2.2 Two’s complement representation (optional)
Section 2.2.1’s approach of representing an integer using a specific
“sign bit” is known as the Signed Magnitude Representation and was
used in some early computers. However, the two’s complement rep-
resentation is much more common in practice. The two’s complement
representation of an integer 𝑘 in the set {−2𝑛, −2𝑛 + 1, … , 2𝑛 − 1} is the
string 𝑍𝑡𝑆𝑛(𝑘) of length 𝑛 + 1 defined as follows:

𝑍𝑡𝑆𝑛(𝑘) =
⎧{
⎨{⎩

𝑁𝑡𝑆𝑛+1(𝑘) 0 ≤ 𝑘 ≤ 2𝑛 − 1
𝑁𝑡𝑆𝑛+1(2𝑛+1 + 𝑘) −2𝑛 ≤ 𝑘 ≤ −1

, (2.3)

where 𝑁𝑡𝑆ℓ(𝑚) demotes the standard binary representation of a num-
ber 𝑚 ∈ {0, … , 2ℓ} as string of length ℓ, padded with leading zeros
as needed. For example, if 𝑛 = 3 then 𝑍𝑡𝑆3(1) = 𝑁𝑡𝑆4(1) = 0001,
𝑍𝑡𝑆3(2) = 𝑁𝑡𝑆4(2) = 0010, 𝑍𝑡𝑆3(−1) = 𝑁𝑡𝑆4(16 − 1) = 1111, and
𝑍𝑡𝑆3(−8) = 𝑁𝑡𝑆4(16 − 8) = 1000. If 𝑘 is a negative number larger
or equal to −2𝑛 then 2𝑛+1 + 𝑘 is a number between 2𝑛 and 2𝑛+1 − 1.
Hence the two’s complement representation of such a number 𝑘 is a
string of length 𝑛 + 1 with its first digit equal to 1.

Another way to say this is that we represent a potentially negative
number 𝑘 ∈ {−2𝑛, … , 2𝑛 −1} as the non-negative number 𝑘 mod 2𝑛+1

(see also Fig. 2.4). This means that if two (potentially negative) num-
bers 𝑘 and 𝑘′ are not too large (i.e., |𝑘| + |𝑘′| < 2𝑛+1), then we can
compute the representation of 𝑘 + 𝑘′ by adding modulo 2𝑛+1 the rep-
resentations of 𝑘 and 𝑘′ as if they were non-negative integers. This
property of the two’s complement representation is its main attraction
since, depending on their architectures, microprocessors can often
perform arithmetic operations modulo 2𝑤 very efficiently (for certain
values of 𝑤 such as 32 and 64). Many systems leave it to the pro-
grammer to check that values are not too large and will carry out this
modular arithmetic regardless of the size of the numbers involved. For
this reason, in some systems adding two large positive numbers can
result in a negative number (e.g., adding 2𝑛 − 100 and 2𝑛 − 200 might
result in −300 since −300 mod 2𝑛+1 = 2𝑛+1 − 300, see also Fig. 2.4).

https://en.wikipedia.org/wiki/Two%27s%5Fcomplement
https://en.wikipedia.org/wiki/Two%27s%5Fcomplement

90 introduction to theoretical computer science

2.2.3 Rational numbers, and representing pairs of strings
We can represent a rational number of the form 𝑎/𝑏 by represent-
ing the two numbers 𝑎 and 𝑏. However, merely concatenating the
representations of 𝑎 and 𝑏 will not work. For example, the binary rep-
resentation of 4 is 100 and the binary representation of 43 is 101011,
but the concatenation 100101011 of these strings is also the concatena-
tion of the representation 10010 of 18 and the representation 1011 of
11. Hence, if we used such simple concatenation then we would not
be able to tell if the string 100101011 is supposed to represent 4/43 or
18/11.

We tackle this by giving a general representation for pairs of strings.
If we were using a pen and paper, we would just use a separator sym-
bol such as ‖ to represent, for example, the pair consisting of the num-
bers represented by 10 and 110001 as the length-9 string “01‖110001”.
In other words, there is a one to one map 𝐹 from pairs of strings
𝑥, 𝑦 ∈ {0, 1}∗ into a single string 𝑧 over the alphabet Σ = {0, 1, ‖}
(in other words, 𝑧 ∈ Σ∗). Using such separators is similar to the
way we use spaces and punctuation to separate words in English. By
adding a little redundancy, we achieve the same effect in the digital
domain. We can map the three-element set Σ to the three-element set
{00, 11, 01} ⊂ {0, 1}2 in a one-to-one fashion, and hence encode a
length 𝑛 string 𝑧 ∈ Σ∗ as a length 2𝑛 string 𝑤 ∈ {0, 1}∗.

Our final representation for rational numbers is obtained by com-
posing the following steps:

1. Representing a non-negative rational number as a pair of natural
numbers.

2. Representing a natural number by a string via the binary represen-
tation.

3. Combining 1 and 2 to obtain a representation of a rational number
as a pair of strings.

4. Representing a pair of strings over {0, 1} as a single string over
Σ = {0, 1, ‖}.

5. Representing a string over Σ as a longer string over {0, 1}.

� Example 2.4 — Representing a rational number as a string. Consider the
rational number 𝑟 = −5/8. We represent −5 as 1101 and +8 as
01000, and so we can represent 𝑟 as the pair of strings (1101, 01000)
and represent this pair as the length 10 string 1101‖01000 over
the alphabet {0, 1, ‖}. Now, applying the map 0 ↦ 00, 1 ↦ 11,

computation and representation 91

‖ ↦ 01, we can represent the latter string as the length 20 string
𝑠 = 0011000000010011000000 over the alphabet {0, 1}.

The same idea can be used to represent triples of strings, quadru-
ples, and so on as a string. Indeed, this is one instance of a very gen-
eral principle that we use time and again in both the theory and prac-
tice of computer science (for example, in Object Oriented program-
ming):

 Big Idea 1 If we can represent objects of type 𝑇 as strings, then we
can represents tuples of objects of type 𝑇 as strings as well.

Repeating the same idea, once we can represent objects of type 𝑇 ,
we can also represent lists of lists of such objects, and even lists of lists
of lists and so on and so forth. We will come back to this point when
we discuss prefix free encoding in Section 2.4.2.

2.3 REPRESENTING REAL NUMBERS

The set of real numbers ℝ contains all numbers including positive,
negative, and fractional, as well as irrational numbers such as 𝜋 or 𝑒.
Every real number can be approximated by a rational number, and
thus we can represent every real number 𝑥 by a rational number 𝑎/𝑏
that is very close to 𝑥. For example, we can represent 𝜋 by 22/7 within
an error of about 10−3. If we want a smaller error (e.g., about 10−4)
then we can use 311/99, and so on and so forth.

Figure 2.5: The floating point representation of a real
number 𝑥 ∈ ℝ is its approximation as a number of
the form 𝜎𝑏 ⋅ 2𝑒 where 𝜎 ∈ {±1}, 𝑒 is an (potentially
negative) integer, and 𝑏 is a rational number between
1 and 2 expressed as a binary fraction 1.𝑏0𝑏1𝑏2 … 𝑏𝑘
for some 𝑏1, … , 𝑏𝑘 ∈ {0, 1} (that is 𝑏 = 1 + 𝑏1/2 +
𝑏2/4 + … + 𝑏𝑘/2𝑘). Commonly-used floating point
representations fix the numbers ℓ and 𝑘 of bits to
represent 𝑒 and 𝑏 respectively. In the example above,
assuming we use two’s complement representation
for 𝑒, the number represented is −1 × 25 × (1 + 1/2 +
1/4 + 1/64 + 1/512) = −56.5625.The above representation of real numbers via rational numbers

that approximate them is a fine choice for a representation scheme.
However, typically in computing applications, it is more common to
use the floating point representation scheme (see Fig. 2.5) to represent
real numbers. In the floating point representation scheme we rep-
resent 𝑥 ∈ ℝ by the pair (𝑏, 𝑒) of (positive or negative) integers of
some prescribed sizes (determined by the desired accuracy) such that
𝑏 × 2𝑒 is closest to 𝑥. Floating point representation is the base-two
version of scientific notation, where one represents a number 𝑦 ∈ 𝑅
as its approximation of the form 𝑏 × 10𝑒 for 𝑏, 𝑒. It is called “floating

https://goo.gl/MUJnVE

92 introduction to theoretical computer science

Figure 2.6: XKCD cartoon on floating-point arithmetic.

3 𝑅𝑡𝑆 stands for “real numbers to strings”.

point” because we can think of the number 𝑏 as specifying a sequence
of binary digits, and 𝑒 as describing the location of the “binary point”
within this sequence. The use of floating representation is the reason
why in many programming systems, printing the expression 0.1+0.2

will result in 0.30000000000000004 and not 0.3, see here, here and
here for more.

The reader might be (rightly) worried about the fact that the float-
ing point representation (or the rational number one) can only ap-
proximately represent real numbers. In many (though not all) com-
putational applications, one can make the accuracy tight enough so
that this does not affect the final result, though sometimes we do need
to be careful. Indeed, floating-point bugs can sometimes be no jok-
ing matter. For example, floating point rounding errors have been
implicated in the failure of a U.S. Patriot missile to intercept an Iraqi
Scud missile, costing 28 lives, as well as a 100 million pound error in
computing payouts to British pensioners.

2.3.1 Can we represent reals exactly?
Given the issues with floating point approximations for real numbers,
a natural question is whether it is possible to represent real numbers
exactly as strings. Unfortunately, the following theorem shows that this
cannot be done:

Theorem 2.5 — Reals are uncountable. There does not exist a one-to-one
function 𝑅𝑡𝑆 ∶ ℝ → {0, 1}∗. 3

Theorem 2.5 was proven by Georg Cantor in 1874. (Cantor used
the set ℕ rather than {0, 1}∗, but one can show that these two results
are equivalent using the one-to-one mappings between those two sets,
see Exercise 2.13.) The non-existence of such a map is equivalent to
saying that there is no way to “count” all the real numbers as some
sequence 𝑥0, 𝑥1, 𝑥2, …. For this reason Theorem 2.5 is known as the
uncountability of the reals.

This result (and the theory around it) was quite shocking to math-
ematicians at the time. By showing that there is no one-to-one map
from ℝ to {0, 1}∗ (or ℕ), Cantor showed that these two infinite sets
have “different forms of infinity” and that the set of real numbers
ℝ is in some sense “bigger” than the infinite set {0, 1}∗. The notion
that there are “shades of infinity” was deeply disturbing to math-
ematicians and philosophers at the time. The philosopher Ludwig
Wittgenstein (whom we mentioned before) called Cantor’s results
“utter nonsense” and “laughable.” Others thought they were even
worse than that. Leopold Kronecker called Cantor a “corrupter of
youth,” while Henri Poincaré said that Cantor’s ideas “should be ban-
ished from mathematics once and for all.” The tide eventually turned,

http://floating-point-gui.de/
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://randomascii.wordpress.com/2012/04/05/floating-point-complexities/
http://embeddedgurus.com/barr-code/2014/03/lethal-software-defects-patriot-missile-failure/
https://catless.ncl.ac.uk/Risks/5/74
https://en.wikipedia.org/wiki/Georg_Cantor

computation and representation 93

4 𝐹𝑡𝑆 stands for “functions to strings”.

5 𝐹𝑡𝑅 stands for “functions to reals.”

and these days Cantor’s work is universally accepted as the corner-
stone of set theory and the foundations of mathematics. As David
Hilbert said in 1925, “No one shall expel us from the paradise which Cantor
has created for us.” As we will see later in this book, Cantor’s ideas also
play a huge role in the theory of computation.

Now that we have discussed Theorem 2.5’s importance, let us see
the proof. It is achieved in two steps:

1. Define some infinite set 𝒳 for which it is easier for us to prove that
𝒳 is not countable (namely, it’s easier for us to prove is there is no
one-to-one function from 𝒳 to {0, 1}∗).

2. Prove that there is a one-to-one function 𝐺 mapping 𝒳 to ℝ.

We can use a proof by contradiction to show that these two facts
together imply Theorem 2.5. Specifically, if we assume (towards the
sake of contradiction) that there exists some one-to-one 𝐹 mapping ℝ
to {0, 1}∗ then the function 𝑥 ↦ 𝐹(𝐺(𝑥)) obtained by composing 𝐹
with the function 𝐺 from Step 2 above would be a one-to-one function
from 𝒳 to {0, 1}∗, which contradicts what we proved in Step 1!

To turn this idea into a full proof of Theorem 2.5 we need to:

• Define the set 𝒳.

• Prove that there is no one-to-one function from 𝒳 to {0, 1}∗

• Prove that there is a one-to-one function from 𝒳 to ℝ.

We now proceed to do precisely that. That is, we will define the set
{0, 1}∞, which will play the role of 𝒳, and then state and prove two
lemmas that show that this set satisfies our two desired properties.

Definition 2.6 We denote by {0, 1}∞ the set {𝑓 | 𝑓 ∶ ℕ → {0, 1}}.

That is, {0, 1}∞ is a set of functions, and a function 𝑓 is in {0, 1}∞

iff its domain is ℕ and its codomain is {0, 1}. We can also think of
{0, 1}∞ as the set of all infinite sequences of bits, since a function 𝑓 ∶
ℕ → {0, 1} can be identified with the sequence (𝑓(0), 𝑓(1), 𝑓(2), …).
The following two lemmas show that {0, 1}∞ can play the role of 𝒳 to
establish Theorem 2.5.

Lemma 2.7 There does not exist a one-to-one map 𝐹𝑡𝑆 ∶ {0, 1}∞ →
{0, 1}∗.4

Lemma 2.8 There does exist a one-to-one map 𝐹𝑡𝑅 ∶ {0, 1}∞ → ℝ.5

As we’ve seen above, Lemma 2.7 and Lemma 2.8 together imply
Theorem 2.5. To repeat the argument more formally, suppose, for
the sake of contradiction, that there did exist a one-to-one function

94 introduction to theoretical computer science

𝑅𝑡𝑆 ∶ ℝ → {0, 1}∗. By Lemma 2.8, there exists a one-to-one function
𝐹𝑡𝑅 ∶ {0, 1}∞ → ℝ. Thus, under this assumption, since the composi-
tion of two one-to-one functions is one-to-one (see Exercise 2.12), the
function 𝐹𝑡𝑆 ∶ {0, 1}∞ → {0, 1}∗ defined as 𝐹𝑡𝑆(𝑓) = 𝑅𝑡𝑆(𝐹𝑡𝑅(𝑓))
will be one to one, contradicting Lemma 2.7. See Fig. 2.7 for a graphi-
cal illustration of this argument.

Figure 2.7: We prove Theorem 2.5 by combining
Lemma 2.7 and Lemma 2.8. Lemma 2.8, which uses
standard calculus tools, shows the existence of a
one-to-one map 𝐹𝑡𝑅 from the set {0, 1}∞ to the real
numbers. So, if a hypothetical one-to-one map 𝑅𝑡𝑆 ∶
ℝ → {0, 1}∗ existed, then we could compose them
to get a one-to-one map 𝐹𝑡𝑆 ∶ {0, 1}∞ → {0, 1}∗.
Yet this contradicts Lemma 2.7- the heart of the proof-
which rules out the existence of such a map.

Now all that is left is to prove these two lemmas. We start by prov-
ing Lemma 2.7 which is really the heart of Theorem 2.5.

Figure 2.8: We construct a function 𝑑 such that 𝑑 ≠
𝑆𝑡𝐹(𝑥) for every 𝑥 ∈ {0, 1}∗ by ensuring that
𝑑(𝑛(𝑥)) ≠ 𝑆𝑡𝐹(𝑥)(𝑛(𝑥)) for every 𝑥 ∈ {0, 1}∗

with lexicographic order 𝑛(𝑥). We can think of this
as building a table where the columns correspond
to numbers 𝑚 ∈ ℕ and the rows correspond to
𝑥 ∈ {0, 1}∗ (sorted according to 𝑛(𝑥)). If the entry
in the 𝑥-th row and the 𝑚-th column corresponds to
𝑔(𝑚)) where 𝑔 = 𝑆𝑡𝐹(𝑥) then 𝑑 is obtained by going
over the “diagonal” elements in this table (the entries
corresponding to the 𝑥-th row and 𝑛(𝑥)-th column)
and ensuring that 𝑑(𝑥)(𝑛(𝑥)) ≠ 𝑆𝑡𝐹(𝑥)(𝑛(𝑥)).

Proof. We will prove that there does not exist an onto function 𝑆𝑡𝐹 ∶
{0, 1}∗ → {0, 1}∞. This implies the lemma since for every two sets 𝐴
and 𝐵, there exists an onto function from 𝐴 to 𝐵 if and only if there
exists a one-to-one function from 𝐵 to 𝐴 (see Lemma 1.2).

computation and representation 95

The technique of this proof is known as the “diagonal argument”
and is illustrated in Fig. 2.8. We assume, towards a contradiction, that
there exists such a function 𝑆𝑡𝐹 ∶ {0, 1}∗ → {0, 1}∞, and we will
show it is not onto by demonstrating a function 𝑑 ∈ {0, 1}∞ such that
𝑑 ≠ 𝑆𝑡𝐹(𝑥) for every 𝑥 ∈ {0, 1}∗. Consider the lexicographic ordering
of binary strings (i.e., "",0,1,00,01,…). We can imagine the function
𝑆𝑡𝐹 as being specified by an infinitely long table, in which every row
corresponds to a string 𝑥 ∈ {0, 1}∗ (sorted in lexicographic order),
and contains the sequence 𝑆𝑡𝐹(𝑥). That is, for every 𝑥 ∈ {0, 1}∗ and
𝑛 ∈ ℕ, the cell in the 𝑥-th row and 𝑛-th column of the table contains
the bit 𝑔(𝑛) where 𝑔 = 𝑆𝑡𝐹(𝑥). The diagonal elements in this table are
the values 𝑆𝑡𝐹("")(0), 𝑆𝑡𝐹(0)(1), 𝑆𝑡𝐹(00)(2), 𝑆𝑡𝐹(01)(3), …, with the
𝑛-th diagonal element 𝑑𝑛 being 𝑆𝑡𝐹(𝑥)(𝑛) where 𝑥 is the 𝑛-th string in
the lexicographic order. We define the function 𝑑 ∈ {0, 1}∞ by 𝑑(𝑛) =
1 − 𝑑𝑛 for every 𝑛 ∈ ℕ. By construction, for every 𝑛, if 𝑎0, 𝑎1, 𝑎2, … is
the 𝑛-th row of this table then 𝑎𝑛 ≠ 𝑑(𝑛). This means that for every
𝑥 ∈ {0, 1}∗, if we let 𝑛 be the position of 𝑥 in the lexicographic order,
then since 𝑔 = 𝑆𝑡𝐹(𝑥) is the 𝑛-th row of the table, 𝑔(𝑛) ≠ 𝑑(𝑛). In
particular, for every 𝑥 ∈ {0, 1}∗, 𝑆𝑡𝐹(𝑥) ≠ 𝑑 which means that 𝑑 is not
in the image of the function 𝑆𝑡𝐹 and hence 𝑆𝑡𝐹 is not onto!

�

P
The proof of Lemma 2.8 is rather subtle, and worth
re-reading a second or third time. We will use the
“diagonal argument” again several times later on in
this book.

R
Remark 2.9 — Generalizing beyond strings and reals.
Lemma 2.7 doesn’t really have much to do with the
natural numbers or the strings. An examination of
the proof shows that it really shows that for every
set 𝑆, there is no one-to-one map 𝐹 ∶ {0, 1}𝑆 → 𝑆
where {0, 1}𝑆 denotes the set {𝑓 | 𝑓 ∶ 𝑆 → {0, 1}}
of all Boolean functions with domain 𝑆. Since we can
identify a subset 𝑉 ⊆ 𝑆 with its characteristic function
𝑓 = 1𝑉 (i.e., 1𝑉 (𝑥) = 1 iff 𝑥 ∈ 𝑉), we can think of
{0, 1}𝑆 also as the set of all subsets of 𝑆. This subset is
sometimes called the power set of 𝑆.
The proof of Lemma 2.7 can be generalized to show
that there is no one-to-one map between a set and its
power set. In particular, it means that the set {0, 1}ℝ is
“even bigger” than ℝ. Cantor used these ideas to con-
struct an infinite hierarchy of shades of infinity. The
number of such shades turns out to be much larger
than |ℕ| or even |ℝ|. He denoted the cardinality of ℕ

96 introduction to theoretical computer science

by ℵ0 and denoted the next largest infinite number
by ℵ1. (ℵ is the first letter in the Hebrew alphabet.)
Cantor also made the continuum hypothesis that
|ℝ| = ℵ1. We will come back to the fascinating story
of this hypothesis later on in this book. This lecture of
Aaronson mentions some of these issues (see also this
Berkeley CS 70 lecture).

To complete the proof of Theorem 2.5, we need to show Lemma 2.8.
This requires some calculus background but is otherwise straightfor-
ward. If you have not had much experience with limits of a real series
before, then the formal proof below might be a little hard to follow.
This part is not the core of Cantor’s argument, nor are such limits
important to the remainder of this book, so you can feel free to take
Lemma 2.8 on faith and skip the proof.

Proof Idea:

We define 𝐹𝑡𝑅(𝑓) to be the number between 0 and 2 whose decimal
expansion is 𝑓(0).𝑓(1)𝑓(2) …, or in other words 𝐹𝑡𝑅(𝑓) = ∑∞

𝑖=0 𝑓(𝑖) ⋅
10−𝑖. To prove that 𝐹𝑡𝑅 is one to one, we need to show that if 𝑓 ≠ 𝑔
then 𝐹𝑡𝑅(𝑓) ≠ 𝐹𝑡𝑅(𝑔). To do that we let 𝑘 ∈ ℕ be the first input on
which 𝑓 and 𝑔 disagree. The numbers 𝐹𝑡𝑅(𝑓) and 𝐹𝑡𝑅(𝑔) agree in
the first 𝑘 − 2 digits following the decimal point and disagree in the
𝑘 − 1-th digit. One can then calculate and verify that this means that
|𝐹 𝑡𝑅(𝑓) − 𝐹𝑡𝑅(𝑔)| > 0.5 ⋅ 10−𝑘 which in particular means that these
two numbers are distinct from one another. (You might wonder why
we can’t immediately deduce that two numbers that differ in a digit
are not the same. The issue is that we have to be a little more careful
when talking about infinite expansions. For example, the number one
half has two decimal expansions 0.5 and 0.49999 ⋯. However, this
issue does not come up if (as in our case) we restrict attention only to
numbers with decimal expansions that do not involve the digit 9.)

⋆

Proof of Lemma 2.8. For every 𝑓 ∈ {0, 1}∞, we define 𝐹𝑡𝑅(𝑓) to be the
number whose decimal expansion is 𝑓(0).𝑓(1)𝑓(2)𝑓(3) ….

Formally we define

𝐹𝑡𝑅(𝑓) =
∞

∑
𝑖=0

𝑓(𝑖) ⋅ 10−𝑖 (2.4)

It is a known result in calculus (whose proof we will not repeat here)
that the series on the righthand side of (2.5) converges to a definite
limit in ℝ.

We now prove that 𝐹𝑡𝑅 is one to one. Let 𝑓, 𝑔 be two distinct func-
tions in {0, 1}∞. Since 𝑓 and 𝑔 are distinct, there must be some input

https://en.wikipedia.org/wiki/Continuum_hypothesis
https://www.scottaaronson.com/democritus/lec2.html
https://www.scottaaronson.com/democritus/lec2.html
http://www.eecs70.org/static/notes/n10.pdf
http://www.eecs70.org/static/notes/n10.pdf

computation and representation 97

on which they differ, and we define 𝑘 to be the smallest such input
and assume without loss of generality that 𝑓(𝑘) = 0 and 𝑔(𝑘) = 1.
(Otherwise, if 𝑓(𝑘) = 1 and 𝑔(𝑘) = 0, then we can simply switch the
roles of 𝑓 and 𝑔.) The numbers 𝐹𝑡𝑅(𝑓) and 𝐹𝑡𝑅(𝑔) agree with each
other up to the 𝑘−1-th digit up after the decimal point. Since this digit
equals 0 for 𝐹𝑡𝑅(𝑓) and equals 1 for 𝐹𝑡𝑅(𝑔), we claim that 𝐹𝑡𝑅(𝑔) is
bigger than 𝐹𝑡𝑅(𝑓) by at least 0.5 ⋅ 10−𝑘. To see this note that the dif-
ference 𝐹𝑡𝑅(𝑔) − 𝐹𝑡𝑅(𝑓) will be mimimized if 𝑔(ℓ) = 0 for every ℓ > 𝑘
and 𝑓(ℓ) = 1 for every ℓ > 𝑘, in which case (since 𝑓 and 𝑔 agree up to
the 𝑘 − 1-th digit)

𝐹𝑡𝑅(𝑔) − 𝐹𝑡𝑅(𝑓) = 10−𝑘 − 10−𝑘−1 − 10−𝑘−2 − 10−𝑘−3 − ⋯ (2.5)

Since the infinite series ∑∞
𝑗=0 10−𝑖 converges to 11/9, it follows that

for every such 𝑓 and 𝑔, 𝐹𝑡𝑅(𝑔) − 𝐹𝑡𝑅(𝑓) ≥ 10−𝑘 − 10−𝑘 ⋅ (11/9) > 0.
In particular we see that for every distinct 𝑓, 𝑔 ∈ {0, 1}∞, 𝐹𝑡𝑅(𝑓) ≠
𝐹𝑡𝑅(𝑔), implying that the function 𝐹𝑡𝑅 is one to one.

�

R
Remark 2.10 — Using decimal expansion (op-
tional). In the proof above we used the fact that
1+1/10+1/100+⋯ converges to 11/9, which plugging
into (2.5) yields that the difference between 𝐹𝑡𝑅(𝑔)
and 𝐹𝑡𝑅(ℎ) is at least 10−𝑘 − 10−𝑘−1 ⋅ (11/9) > 0.
While the choice of the decimal representation for
𝐹𝑡𝑅 was arbitrary, we could not have used the bi-
nary representation in its place. Had we used the
binary expansion instead of decimal, the correspond-
ing sequence 1 + 1/2 + 1/4 + ⋯ converges to 2,
and since 2−𝑘 = 2−𝑘−1 ⋅ 2, we could not have de-
duced that 𝐹𝑡𝑅 is one to one. Indeed there do exist
pairs of distinct sequences 𝑓, 𝑔 ∈ {0, 1}∞ such that
∑∞

𝑖=0 𝑓(𝑖)2−𝑖 = ∑∞
𝑖=0 𝑔(𝑖)2−𝑖.

2.4 REPRESENTING OBJECTS BEYOND NUMBERS

Numbers are of course by no means the only objects that we can rep-
resented as binary strings. A representation scheme for representing
objects from some set 𝒪 consists of an encoding function that maps an
object in 𝒪 to a string, and a decoding function that decodes a string
back to an object in 𝒪. Formally, we make the following definition:

Definition 2.11 — String representation. Let 𝒪 be any set. A representation
scheme for 𝒪 is a pair of functions 𝐸, 𝐷 where 𝐸 ∶ 𝒪 → {0, 1}∗ is a

98 introduction to theoretical computer science

total one-to-one function, 𝐷 ∶ {0, 1}∗ →𝑝 𝒪 is a (possibly partial)
function, and such that 𝐷 and 𝐸 satisfy that 𝐷(𝐸(𝑜)) = 𝑜 for every
𝑜 ∈ 𝒪. 𝐸 is known as the encoding function and 𝐷 is known as the
decoding function.

Note that the condition 𝐷(𝐸(𝑜)) = 𝑜 for every 𝑜 ∈ 𝒪 implies
that 𝐷 is onto (can you see why?). It turns out that to construct a
representation scheme we only need to find an encoding function. That
is, every one-to-one encoding function has a corresponding decoding
function, as shown in the following lemma:

Lemma 2.12 Suppose that 𝐸 ∶ 𝒪 → {0, 1}∗ is one-to-one. Then there
exists a function 𝐷 ∶ {0, 1}∗ → 𝒪 such that 𝐷(𝐸(𝑜)) = 𝑜 for every
𝑜 ∈ 𝒪.

Proof. Let 𝑜0 be some arbitrary element of 𝒪. For every 𝑥 ∈ {0, 1}∗,
there exists either zero or a single 𝑜 ∈ 𝒪 such that 𝐸(𝑜) = 𝑥 (otherwise
𝐸 would not be one-to-one). We will define 𝐷(𝑥) to equal 𝑜0 in the
first case and this single object 𝑜 in the second case. By definition
𝐷(𝐸(𝑜)) = 𝑜 for every 𝑜 ∈ 𝒪.

�

R
Remark 2.13 — Total decoding functions. While the
decoding function of a representation scheme can in
general be a partial function, the proof of Lemma 2.12
implies that every representation scheme has a total
decoding function. This observation can sometimes be
useful.

2.4.1 Finite representations
If 𝒪 is finite, then we can represent every object in 𝑜 as a string of
length at most some number 𝑛. What is the value of 𝑛? Let us de-
note by {0, 1}≤𝑛 the set {𝑥 ∈ {0, 1}∗ ∶ |𝑥| ≤ 𝑛} of strings of length at
most 𝑛. The size of {0, 1}≤𝑛 is equal to

|{0, 1}0| + |{0, 1}1| + |{0, 1}2| + ⋯ + |{0, 1}𝑛| =
𝑛

∑
𝑖=0

2𝑖 = 2𝑛+1 − 1 (2.6)

using the standard formula for summing a geometric progression.
To obtain a representation of objects in 𝒪 as strings of length at

most 𝑛 we need to come up with a one-to-one function from 𝒪 to
{0, 1}≤𝑛. We can do so, if and only if |𝒪| ≤ 2𝑛+1 − 1 as is implied by
the following lemma:

Lemma 2.14 For every two finite sets 𝑆, 𝑇 , there exists a one-to-one
𝐸 ∶ 𝑆 → 𝑇 if and only if |𝑆| ≤ |𝑇 |.

https://en.wikipedia.org/wiki/Geometric_progression

computation and representation 99

6 This observation is sometimes known as the “Pigeon
Hole Principle”: the principle that if you have a
pigeon coop with 𝑚 holes, and 𝑘 > 𝑚 pigeons, then
there must be two pigeons in the same hole.

7 English has some complications such as periods
used for abbreviations (e.g., “e.g.”) or sentence
quotes containing punctuation, but high level point of
a prefix-free representation for setnences still holds.

Proof. Let 𝑘 = |𝑆| and 𝑚 = |𝑇 | and so write the elements of 𝑆 and
𝑇 as 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑘−1} and 𝑇 = {𝑡0, 𝑡1, … , 𝑡𝑚−1}. We need to
show that there is a one-to-one function 𝐸 ∶ 𝑆 → 𝑇 iff 𝑘 ≤ 𝑚. For
the “if” direction, if 𝑘 ≤ 𝑚 we can simply define 𝐸(𝑠𝑖) = 𝑡𝑖 for every
𝑖 ∈ [𝑘]. Clearly for 𝑖 ≠ 𝑗, 𝑡𝑖 = 𝐸(𝑠𝑖) ≠ 𝐸(𝑠𝑗) = 𝑡𝑗, and hence this
function is one-to-one. In the other direction, suppose that 𝑘 > 𝑚 and
𝐸 ∶ 𝑆 → 𝑇 is some function. Then 𝐸 cannot be one-to-one. Indeed, for
𝑖 = 0, 1, … , 𝑚 − 1 let us “mark” the element 𝑡𝑗 = 𝐸(𝑠𝑖) in 𝑇 . If 𝑡𝑗 was
marked before, then we have found two objects in 𝑆 mapping to the
same element 𝑡𝑗. Otherwise, since 𝑇 has 𝑚 elements, when we get to
𝑖 = 𝑚 − 1 we mark all the objects in 𝑇 . Hence, in this case, 𝐸(𝑠𝑚) must
map to an element that was already marked before.6

�

2.4.2 Prefix-free encoding
When showing a representation scheme for rational numbers, we used
the “hack” of encoding the alphabet {0, 1, ‖} to represent tuples of
strings as a single string. This is a special case of the general paradigm
of prefix-free encoding. The idea is the following: if our representation
has the property that no string 𝑥 representing an object 𝑜 is a prefix
(i.e., an initial substring) of a string 𝑦 representing a different object
𝑜′, then we can represent a lists of objects by merely concatenating the
representations of all the list members. For example, because in En-
glish every sentence ends with a punctuation mark such as a period,
exclamation, or question mark, no sentence can be a prefix of another
and so we can represent a list of sentences by merely concatenating
the sentences one after the other.7

It turns out that we can transform every representation to a prefix-
free form. This justifies Big Idea 1, and allows us to transform a repre-
sentation scheme for objects of a type 𝑇 to a representation scheme of
lists of objects of the type 𝑇 . By repeating the same technique, we can
also represent lists of lists of objects of type 𝑇 , and so on and so forth.
But first let us formally define prefix-freeness:

::: {.definition title=“Prefix free encoding” #prefixfreedef} For two
strings 𝑦, 𝑦′, we say that 𝑦 is a prefix of 𝑦′ if |𝑦| ≤ |𝑦′| and for every
𝑖 < |𝑦|, 𝑦′

𝑖 = 𝑦𝑖.
Let 𝒪 be a non-empty set and 𝐸 ∶ 𝒪 → {0, 1}∗ be a function.
We say that 𝐸 is prefix-free if 𝐸(𝑜) is non-empty for every 𝑜 ∈ 𝒪 and

there does not exist a distinct pair of objects 𝑜, 𝑜′ ∈ 𝒪 such that 𝐸(𝑜) is
a prefix of 𝐸(𝑜′).

Recall that for every set 𝒪, the set 𝒪∗ consists of all finite length
tuples (i.e., lists) of elements in 𝒪. The following theorem shows that
if 𝐸 is a prefix-free encoding of 𝒪 then by concatenating encodings we
can obtain a valid (i.e., one-to-one) representation of 𝒪∗:

100 introduction to theoretical computer science

Figure 2.9: If we have a prefix-free representation of
each object then we can concatenate the representa-
tions of 𝑘 objects to obtain a representation for the
tuple (𝑜0, … , 𝑜𝑘−1).

Theorem 2.15 — Prefix-free implies tuple encoding. Suppose that 𝐸 ∶ 𝒪 →
{0, 1}∗ is prefix-free. Then the following map 𝐸 ∶ 𝒪∗ → {0, 1}∗ is
one to one, for every 𝑜0, … , 𝑜𝑘−1 ∈ 𝒪∗, we define

𝐸(𝑜0, … , 𝑜𝑘−1) = 𝐸(𝑜0)𝐸(𝑜1) ⋯ 𝐸(𝑜𝑘−1) . (2.7)

P
Theorem 2.15 is an example of a theorem that is a little
hard to parse, but in fact is fairly straightforward to
prove once you understand what it means. Therefore,
I highly recommend that you pause here to make
sure you understand the statement of this theorem.
You should also try to prove it on your own before
proceeding further.

Proof Idea:

The idea behind the proof is simple. Suppose that for example
we want to decode a triple (𝑜0, 𝑜1, 𝑜2) from its representation 𝑥 =
𝐸′(𝑜0, 𝑜1, 𝑜2) = 𝐸(𝑜0)𝐸(𝑜1)𝐸(𝑜2). We will do so by first finding the
first prefix 𝑥0 of 𝑥 such is a representation of some object. Then we
will decode this object, remove 𝑥0 from 𝑥 to obtain a new string 𝑥′,
and continue onwards to find the first prefix 𝑥1 of 𝑥′ and so on and so
forth (see Exercise 2.9). The prefix-freeness property of 𝐸 will ensure
that 𝑥0 will in fact be 𝐸(𝑜0), 𝑥1 will be 𝐸(𝑜1), etc.

⋆

Proof of Theorem 2.15. We now show the formal proof. Suppose, to-
wards the sake of contradiction, that there exist two distinct tuples
(𝑜0, … , 𝑜𝑘−1) and (𝑜′

0, … , 𝑜′
𝑘′−1) such that

𝐸(𝑜0, … , 𝑜𝑘−1) = 𝐸(𝑜′
0, … , 𝑜′

𝑘′−1) . (2.8)

We will denote the string 𝐸(𝑜0, … , 𝑜𝑘−1) by 𝑥.
Let 𝑖 be the first index such that 𝑜𝑖 ≠ 𝑜′

𝑖. (If 𝑜𝑖 = 𝑜′
𝑖 for all 𝑖 then,

since we assume the two tuples are distinct, one of them must be
larger than the other. In this case we assume without loss of generality
that 𝑘′ > 𝑘 and let 𝑖 = 𝑘.) In the case that 𝑖 < 𝑘, we see that the string
𝑥 can be written in two different ways:

𝑥 = 𝐸(𝑜0, … , 𝑜𝑘−1) = 𝑥0 ⋯ 𝑥𝑖−1𝐸(𝑜𝑖)𝐸(𝑜𝑖+1) ⋯ 𝐸(𝑜𝑘−1) (2.9)

and

𝑥 = 𝐸(𝑜′
0, … , 𝑜′

𝑘′−1) = 𝑥0 ⋯ 𝑥𝑖−1𝐸(𝑜′
𝑖)𝐸(𝑜′

𝑖+1) ⋯ 𝐸(𝑜′
𝑘−1) (2.10)

computation and representation 101

where 𝑥𝑗 = 𝐸(𝑜𝑗) = 𝐸(𝑜′
𝑗) for all 𝑗 < 𝑖. Let 𝑦 be the string obtained

after removing the prefix 𝑥0 ⋯ 𝑥𝑖−𝑖 from 𝑥. We see that 𝑦 can be writ-
ten as both 𝑦 = 𝐸(𝑜𝑖)𝑠 for some string 𝑠 ∈ {0, 1}∗ and as 𝑦 = 𝐸(𝑜′

𝑖)𝑠′

for some 𝑠′ ∈ {0, 1}∗. But this means that one of 𝐸(𝑜𝑖) and 𝐸(𝑜′
𝑖) must

be a prefix of the other, contradicting the prefix-freeness of 𝐸.
In the case that 𝑖 = 𝑘 and 𝑘′ > 𝑘, we get a contradiction in the

following way. In this case

𝑥 = 𝐸(𝑜0) ⋯ 𝐸(𝑜𝑘−1) = 𝐸(𝑜0) ⋯ 𝐸(𝑜𝑘−1)𝐸(𝑜′
𝑘) ⋯ 𝐸(𝑜′

𝑘′−1) (2.11)

which means that 𝐸(𝑜′
𝑘) ⋯ 𝐸(𝑜′

𝑘′−1) must correspond to the empty
string "". But in such a case 𝐸(𝑜′

𝑘) must be the empty string, which in
particular is the prefix of any other string, contradicting the prefix-
freeness of 𝐸.

�

R
Remark 2.16 — Prefix freeness of list representation.
Even if the representation 𝐸 of objects in 𝒪 is prefix
free, this does not mean that our representation 𝐸
of lists of such objects will be prefix free as well. In
fact, it won’t be: for every three objects 𝑜, 𝑜′, 𝑜″ the
representation of the list (𝑜, 𝑜′) will be a prefix of the
representation of the list (𝑜, 𝑜′, 𝑜″). However, as we see
in Lemma 2.17 below, we can transform every repre-
sentation into prefix-free form, and so will be able to
use that transformation if needed to represent lists of
lists, lists of lists of lists, and so on and so forth.

2.4.3 Making representations prefix-free
Some natural representations are prefix-free. For example, every fixed
output length representation (i.e., one-to-one function 𝐸 ∶ 𝒪 → {0, 1}𝑛)
is automatically prefix-free, since a string 𝑥 can only be a prefix of
an equal-length 𝑥′ if 𝑥 and 𝑥′ are identical. Moreover, the approach
we used for representing rational numbers can be used to show the
following:

Lemma 2.17 Let 𝐸 ∶ 𝒪 → {0, 1}∗ be a one-to-one function. Then there is
a one-to-one prefix-free encoding 𝐸 such that |𝐸(𝑜)| ≤ 2|𝐸(𝑜)| + 2 for
every 𝑜 ∈ 𝒪.

P
For the sake of completeness, we will include the
proof below, but it is a good idea for you to pause
here and try to prove it on your own, using the same
technique we used for representing rational numbers.

102 introduction to theoretical computer science

Proof of Lemma 2.17. The idea behind the proof is to use the map 0 ↦
00, 1 ↦ 11 to “double” every bit in the string 𝑥 and then mark the
end of the string by concatenating to it the pair 01. If we encode a
string 𝑥 in this way, it ensures that the encoding of 𝑥 is never a prefix
of the encoding of a distinct string 𝑥′. Formally, we define the function
PF ∶ {0, 1}∗ → {0, 1}∗ as follows:

PF(𝑥) = 𝑥0𝑥0𝑥1𝑥1 … 𝑥𝑛−1𝑥𝑛−101 (2.12)

for every 𝑥 ∈ {0, 1}∗. If 𝐸 ∶ 𝒪 → {0, 1}∗ is the (potentially not
prefix-free) representation for 𝒪, then we transform it into a prefix-
free representation 𝐸 ∶ 𝒪 → {0, 1}∗ by defining 𝐸(𝑜) = PF(𝐸(𝑜)).

To prove the lemma we need to show that (1) 𝐸 is one-to-one and
(2) 𝐸 is prefix-free. In fact, prefix freeness is a stronger condition than
one-to-one (if two strings are equal then in particular one of them is a
prefix of the other) and hence it suffices to prove (2), which we now
do.

Let 𝑜 ≠ 𝑜′ in 𝒪 be two distinct objects. We will prove that 𝐸(𝑜)
is a not a prefix of 𝐸(𝑜′). Define 𝑥 = 𝐸(𝑜) and 𝑥′ = 𝐸(𝑜′). Since
𝐸 is one-to-one, 𝑥 ≠ 𝑥′. Under our assumption, PF(𝑥) is a prefix
of PF(𝑥′). If |𝑥| < |𝑥′| then the two bits in positions 2|𝑥|, 2|𝑥| + 1
in PF(𝑥) have the value 01 but the corresponding bits in PF(𝑥′) will
equal either 00 or 11 (depending on the |𝑥|-th bit of 𝑥′) and hence
PF(𝑥) cannot be a prefix of PF(𝑥′). If |𝑥| = |𝑥′| then, since 𝑥 ≠ 𝑥′,
there must be a coordinate 𝑖 in which they differ, meaning that the
strings PF(𝑥) and PF(𝑥′) differ in the coordinates 2𝑖, 2𝑖 + 1, which
again means that PF(𝑥) cannot be a prefix of PF(𝑥′). If |𝑥| > |𝑥′|
then |PF(𝑥)| = 2|𝑥| + 2 > |PF(𝑥′)| = 2|𝑥′| + 2 and hence PF(𝑥) is
longer than (and cannot be a prefix of) PF(𝑥′). In all cases we see that
PF(𝑥) = 𝐸(𝑜) is not a prefix of PF(𝑥′) = 𝐸(𝑜′), hence completing the
proof.

�

The proof of Lemma 2.17 is not the only or even the best way to
transform an arbitrary representation into prefix-free form. Exer-
cise 2.10 asks you to construct a more efficient prefix-free transforma-
tion satisfying |𝐸(𝑜)| ≤ |𝐸(𝑜)| + 𝑂(log |𝐸(𝑜)|).

2.4.4 “Proof by Python” (optional)
The proofs of Theorem 2.15 and Lemma 2.17 are constructive in the
sense that they give us:

• A way to transform the encoding and decoding functions of any
representation of an object 𝑂 to an encoding and decoding func-
tions that are prefix-free, and

computation and representation 103

• A way to extend prefix-free encoding and decoding of single objects
to encoding and decoding of lists of objects by concatenation.

Specifically, we could transform any pair of Python functions en-
code and decode to functions pfencode and pfdecode that correspond
to a prefix-free encoding and decoding. Similarly, given pfencode and
pfdecode for single objects, we can extend them to encoding of lists.
Let us show how this works for the case of the NtS and StN functions
we defined above.

We start with the “Python proof” of Lemma 2.17: a way to trans-
form an arbitrary representation into one that is prefix free. The func-
tion prefixfree below takes as input a pair of encoding and decoding
functions, and returns a triple of functions containing prefix-free encod-
ing and decoding functions, as well as a function that checks whether
a string is a valid encoding of an object.

takes functions encode and decode mapping

objects to lists of bits and vice versa,

and returns functions pfencode and pfdecode that

maps objects to lists of bits and vice versa

in a prefix-free way.

Also returns a function pfvalid that says

whether a list is a valid encoding

def prefixfree(encode, decode):

def pfencode(o):

L = encode(o)

return [L[i//2] for i in range(2*len(L))]+[0,1]

def pfdecode(L):

return decode([L[j] for j in range(0,len(L)-2,2)])

def pfvalid(L):

return (len(L) % 2 == 0) and all(L[2*i]==L[2*i+1]

for i in range((len(L)-2)//2)) and

L[-2:]==[0,1]

↪

↪

return pfencode, pfdecode, pfvalid

pfNtS, pfStN , pfvalidN = prefixfree(NtS,StN)

NtS(234)

11101010

pfNtS(234)

111111001100110001

pfStN(pfNtS(234))

234

104 introduction to theoretical computer science

8 When it’s not too awkward, we use the term “Python
function” or “subroutine” to distinguish between
such snippets of Python programs and mathematical
functions. However, in comments in Python source
we use “functions” to denote Python functions, just as
we use “integers” to denote Python int objects.

pfvalidM(pfNtS(234))

true

P
Note that the Python function prefixfree above
takes two Python functions as input and outputs three
Python functions as output. 8 You don’t have to
know Python in this course, but you do need to get
comfortable with the idea of functions as mathemat-
ical objects in their own right, that can be used as
inputs and outputs of other functions.

We now show a “Python proof” of Theorem 2.15. Namely, we show
a function represlists that takes as input a prefix-free representation
scheme (implemented via encoding, decoding, and validity testing
functions) and outputs a representation scheme for lists of such ob-
jects. If we want to make this representation prefix-free then we could
fit it into the function prefixfree above.

def represlists(pfencode,pfdecode,pfvalid):

"""

Takes functions pfencode, pfdecode and pfvalid,

and returns functions encodelists, decodelists

that can encode and decode lists of the objects

respectively.

"""

def encodelist(L):

"""Gets list of objects, encodes it as list of

bits"""↪

return "".join([pfencode(obj) for obj in L])

def decodelist(S):

"""Gets lists of bits, returns lists of objects"""

i=0; j=1 ; res = []

while j<=len(S):

if pfvalid(S[i:j]):

res += [pfdecode(S[i:j])]

i=j

j+= 1

return res

return encodelist,decodelist

computation and representation 105

Figure 2.10: The word “Binary” in “Grade 1” or
“uncontracted” Unified English Braille. This word is
encoded using seven symbols since the first one is a
modifier indicating that the first letter is capitalized.

LtS , StL = represlists(pfNtS,pfStN,pfvalidN)

LtS([234,12,5])

111111001100110001111100000111001101

StL(LtS([234,12,5]))

[234, 12, 5]

2.4.5 Representing letters and text
We can represent a letter or symbol by a string, and then if this rep-
resentation is prefix-free, we can represent a sequence of symbols by
merely concatenating the representation of each symbol. One such
representation is the ASCII that represents 128 letters and symbols as
strings of 7 bits. Since the ASCII representation is fixed-length, it is
automatically prefix-free (can you see why?). Unicode is representa-
tion of (at the time of this writing) about 128,000 symbols as numbers
(known as code points) between 0 and 1, 114, 111. There are several
types of prefix-free representations of the code points, a popular one
being UTF-8 that encodes every codepoint into a string of length be-
tween 8 and 32.

� Example 2.18 — The Braille representation. The Braille system is another
way to encode letters and other symbols as binary strings. Specifi-
cally, in Braille, every letter is encoded as a string in {0, 1}6, which
is written using indented dots arranged in two columns and three
rows, see Fig. 2.10. (Some symbols require more than one six-bit
string to encode, and so Braille uses a more general prefix-free
encoding.)

The Braille system was invented in 1821 by Louis Braille when
he was just 12 years old (though he continued working on it and
improving it throughout his life). Braille was a French boy that lost
his eyesight at the age of 5 as the result of an accident.

� Example 2.19 — Representing objects in C (optional). We can use pro-
gramming languages to probe how our computing environment
represents various values. This is easiest to do in “unsafe” pro-
gramming languages such as C that allow direct access to the
memory.

Using a simple C program we have produced the following
representations of various values. One can see that for integers,
multiplying by 2 corresponds to a “left shift” inside each byte. In
contrast, for floating point numbers, multiplying by two corre-
sponds to adding one to the exponent part of the representation.
In the architecture we used, a negative number is represented

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
https://goo.gl/Y2BkEe
https://goo.gl/L8oMzn

106 introduction to theoretical computer science

9 We can restrict to three primary colors since (most)
humans only have three types of cones in their
retinas. We would have needed 16 primary colors
to represent colors visible to the Mantis Shrimp.
10 Of course these representations are rather wasteful
and much more compact representations are typically
used for images and videos, though this will not be
our concern in this book.

Figure 2.11: Representing the graph 𝐺 =
({0, 1, 2, 3, 4}, {(1, 0), (4, 0), (1, 4), (4, 1), (2, 1), (3, 2), (4, 3)})
in the adjacency matrix and adjacency list representa-
tions.

using the two’s complement approach. C represents strings in a
prefix-free form by ensuring that a zero byte is at their end.

int 2 : 00000010 00000000 00000000 00000000

int 4 : 00000100 00000000 00000000 00000000

int 513 : 00000001 00000010 00000000 00000000

long 513 : 00000001 00000010 00000000 00000000

00000000 00000000 00000000 00000000↪

int -1 : 11111111 11111111 11111111 11111111

int -2 : 11111110 11111111 11111111 11111111

string Hello: 01001000 01100101 01101100 01101100

01101111 00000000↪

string abcd : 01100001 01100010 01100011 01100100

00000000↪

float 33.0 : 00000000 00000000 00000100 01000010

float 66.0 : 00000000 00000000 10000100 01000010

float 132.0: 00000000 00000000 00000100 01000011

double 132.0: 00000000 00000000 00000000 00000000

00000000 10000000 01100000 01000000↪

2.4.6 Representing vectors, matrices, images
Once we can represent numbers and lists of numbers, then we can also
represent vectors (which are just lists of numbers). Similarly, we can
represent lists of lists, and thus, in particular, can represent matrices.
To represent an image, we can represent the color at each pixel by a
list of three numbers corresponding to the intensity of Red, Green
and Blue.9 Thus an image of 𝑛 pixels would be represented by a list
of 𝑛 such length-three lists. A video can be represented as a list of
images.10

2.4.7 Representing graphs
A graph on 𝑛 vertices can be represented as an 𝑛 × 𝑛 adjacency matrix
whose (𝑖, 𝑗)𝑡ℎ entry is equal to 1 if the edge (𝑖, 𝑗) is present and is
equal to 0 otherwise. That is, we can represent an 𝑛 vertex directed
graph 𝐺 = (𝑉 , 𝐸) as a string 𝐴 ∈ {0, 1}𝑛2 such that 𝐴𝑖,𝑗 = 1 iff the
edge ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 𝑗 ∈ 𝐸. We can transform an undirected graph to a directed
graph by replacing every edge {𝑖, 𝑗} with both edges ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 𝑗 and ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖𝑖 𝑗

Another representation for graphs is the adjacency list representa-
tion. That is, we identify the vertex set 𝑉 of a graph with the set [𝑛]
where 𝑛 = |𝑉 |, and represent the graph 𝐺 = (𝑉 , 𝐸) as a list of 𝑛
lists, where the 𝑖-th list consists of the out-neighbors of vertex 𝑖. The
difference between these representations can be significant for some
applications, though for us would typically be immaterial.

https://en.wikipedia.org/wiki/Tetrachromacy
https://goo.gl/t7JBfC
https://en.wikipedia.org/wiki/JPEG
https://goo.gl/Vs8UhU
https://goo.gl/wov5fa

computation and representation 107

2.4.8 Representing lists and nested lists
If we have a way of representing objects from a set 𝒪 as binary strings,
then we can represent lists of these objects by applying a prefix-free
transformation. Moreover, we can use a trick similar to the above to
handle nested lists. The idea is that if we have some representation
𝐸 ∶ 𝒪 → {0, 1}∗, then we can represent nested lists of items from
𝒪 using strings over the five element alphabet Σ = { 0,1,[,] , , }.
For example, if 𝑜1 is represented by 0011, 𝑜2 is represented by 10011,
and 𝑜3 is represented by 00111, then we can represent the nested list
(𝑜1, (𝑜2, 𝑜3)) as the string "[0011,[10011,00111]]" over the alphabet
Σ. By encoding every element of Σ itself as a three-bit string, we can
transform any representation for objects 𝒪 into a representation that
enables representing (potentially nested) lists of these objects.

2.4.9 Notation
We will typically identify an object with its representation as a string.
For example, if 𝐹 ∶ {0, 1}∗ → {0, 1}∗ is some function that maps
strings to strings and 𝑛 is an integer, we might make statements such
as “𝐹(𝑛) + 1 is prime” to mean that if we represent 𝑛 as a string 𝑥,
then the integer 𝑚 represented by the string 𝐹(𝑥) satisfies that 𝑚 + 1
is prime. (You can see how this convention of identifying objects with
their representation can save us a lot of cumbersome formalism.)
Similarly, if 𝑥, 𝑦 are some objects and 𝐹 is a function that takes strings
as inputs, then by 𝐹(𝑥, 𝑦) we will mean the result of applying 𝐹 to the
representation of the ordered pair (𝑥, 𝑦). We use the same notation to
invoke functions on 𝑘-tuples of objects for every 𝑘.

This convention of identifying an object with its representation as
a string is one that we humans follow all the time. For example, when
people say a statement such as “17 is a prime number”, what they
really mean is that the integer whose decimal representation is the
string “17”, is prime.

When we say
𝐴 is an algorithm that computes the multiplication
function on natural numbers.
what we really mean is that
𝐴 is an algorithm that computes the function
𝐹 ∶ {0, 1}∗ → {0, 1}∗ such that for every pair 𝑎, 𝑏 ∈ ℕ,
if 𝑥 ∈ {0, 1}∗ is a string representing the pair (𝑎, 𝑏) then
𝐹(𝑥) will be a string representing their product 𝑎 ⋅ 𝑏.

108 introduction to theoretical computer science

2.5 DEFINING COMPUTATIONAL TASKS AS MATHEMATICAL FUNC-
TIONS

Abstractly, a computational process is some process that takes an input
which is a string of bits and produces an output which is a string
of bits. This transformation of input to output can be done using a
modern computer, a person following instructions, the evolution of
some natural system, or any other means.

In future chapters, we will turn to mathematically defining com-
putational processes, but, as we discussed above, at the moment we
focus on computational tasks. That is, we focus on the specification and
not the implementation. Again, at an abstract level, a computational
task can specify any relation that the output needs to have with the in-
put. However, for most of this book, we will focus on the simplest and
most common task of computing a function. Here are some examples:

• Given (a representation of) two integers 𝑥, 𝑦, compute the product
𝑥 × 𝑦. Using our representation above, this corresponds to com-
puting a function from {0, 1}∗ to {0, 1}∗. We have seen that there is
more than one way to solve this computational task, and in fact, we
still do not know the best algorithm for this problem.

• Given (a representation of) an integer 𝑧 > 1, compute its factoriza-
tion; i.e., the list of primes 𝑝1 ≤ ⋯ ≤ 𝑝𝑘 such that 𝑧 = 𝑝1 ⋯ 𝑝𝑘. This
again corresponds to computing a function from {0, 1}∗ to {0, 1}∗.
The gaps in our knowledge of the complexity of this problem are
even larger.

• Given (a representation of) a graph 𝐺 and two vertices 𝑠 and 𝑡,
compute the length of the shortest path in 𝐺 between 𝑠 and 𝑡, or do
the same for the longest path (with no repeated vertices) between
𝑠 and 𝑡. Both these tasks correspond to computing a function from
{0, 1}∗ to {0, 1}∗, though it turns out that there is a vast difference in
their computational difficulty.

• Given the code of a Python program, determine whether there is an
input that would force it into an infinite loop. This task corresponds
to computing a partial function from {0, 1}∗ to {0, 1} since not every
string corresponds to a syntactically valid Python program. We will
see that we do understand the computational status of this problem,
but the answer is quite surprising.

• Given (a representation of) an image 𝐼 , decide if 𝐼 is a photo of a
cat or a dog. This corresponds to computing some (partial) func-
tion from {0, 1}∗ to {0, 1}.

computation and representation 109

Figure 2.12: A subset 𝐿 ⊆ {0, 1}∗ can be identified
with the function 𝐹 ∶ {0, 1}∗ → {0, 1} such that
𝐹(𝑥) = 1 if 𝑥 ∈ 𝐿 and 𝐹(𝑥) = 0 if 𝑥 ∉ 𝐿. Functions
with a single bit of output are called Boolean functions,
while subsets of strings are called languages. The
above shows that the two are essentially the same
object, and we can identify the task of deciding
membership in 𝐿 (known as deciding a language in the
literature) with the task of computing the function 𝐹 .

R
Remark 2.20 — Boolean functions and languages. An
important special case of computational tasks corre-
sponds to computing Boolean functions, whose output
is a single bit {0, 1}. Computing such functions corre-
sponds to answering a YES/NO question, and hence
this task is also known as a decision problem. Given any
function 𝐹 ∶ {0, 1}∗ → {0, 1} and 𝑥 ∈ {0, 1}∗, the task
of computing 𝐹(𝑥) corresponds to the task of deciding
whether or not 𝑥 ∈ 𝐿 where 𝐿 = {𝑥 ∶ 𝐹(𝑥) = 1} is
known as the language that corresponds to the function
𝐹 . (The language terminology is due to historical
connections between the theory of computation and
formal linguistics as developed by Noam Chomsky.)
Hence many texts refer to such as computational task
as deciding a language.

For every particular function 𝐹 , there can be several possible algo-
rithms to compute 𝐹 . We will be interested in questions such as:

• For a given function 𝐹 , can it be the case that there is no algorithm to
compute 𝐹 ?

• If there is an algorithm, what is the best one? Could it be that 𝐹 is
“effectively uncomputable” in the sense that every algorithm for
computing 𝐹 requires a prohibitively large amount of resources?

• If we cannot answer this question, can we show equivalence be-
tween different functions 𝐹 and 𝐹 ′ in the sense that either they are
both easy (i.e., have fast algorithms) or they are both hard?

• Can a function being hard to compute ever be a good thing? Can we
use it for applications in areas such as cryptography?

In order to do that, we will need to mathematically define the no-
tion of an algorithm, which is what we will do in Chapter 3.

2.5.1 Distinguish functions from programs!
You should always watch out for potential confusions between speci-
fications and implementations or equivalently between mathematical
functions and algorithms/programs. It does not help that program-
ming languages (Python included) use the term “functions” to denote
(parts of) programs. This confusion also stems from thousands of years
of mathematical history, where people typically defined functions by
means of a way to compute them.

For example, consider the multiplication function on natural num-
bers. This is the function MULT ∶ ℕ × ℕ → ℕ that maps a pair (𝑥, 𝑦)
of natural numbers to the number 𝑥 ⋅ 𝑦. As we mentioned, it can be
implemented in more than one way:

110 introduction to theoretical computer science

Figure 2.13: A function is a mapping of inputs to
outputs. A program is a set of instructions on how
to obtain an output given an input. A program
computes a function, but it is not the same as a func-
tion, popular programming language terminology
notwithstanding.

def mult1(x,y):

res = 0

while y>0:

res += x

y -= 1

return res

def mult2(x,y):

a = str(x) # represent x as string in decimal notation

b = str(y) # represent y as string in decimal notation

res = 0

for i in range(len(a)):

for j in range(len(b)):

res += int(a[len(a)-i])*int(b[len(b)-

j])*(10**(i+j))↪

return res

print(mult1(12,7))

84

print(mult2(12,7))

84

Both mult1 and mult2 produce the same output given the same
pair of natural number inputs. (Though mult1 will take far longer to
do so when the numbers become large.) Hence, even though these are
two different programs, they compute the same mathematical function.
This distinction between a program or algorithm 𝐴, and the function 𝐹
that 𝐴 computes will be absolutely crucial for us in this course (see also
Fig. 2.13).

 Big Idea 2 A function is not the same as a program. A program
computes a function.

Distinguishing functions from programs (or other ways for comput-
ing, including circuits and machines) is a crucial theme for this course.
For this reason, this is often a running theme in questions that I (and
many other instructors) assign in homeworks and exams (hint, hint).

R
Remark 2.21 — Computation beyond functions (advanced,
optional). Functions capture quite a lot of compu-
tational tasks, but one can consider more general
settings as well. For starters, we can and will talk
about partial functions, that are not defined on all
inputs. When computing a partial function, we only

computation and representation 111

need to worry about the inputs on which the function
is defined. Another way to say it is that we can design
an algorithm for a partial function 𝐹 under the as-
sumption that someone “promised” us that all inputs
𝑥 would be such that 𝐹(𝑥) is defined (as otherwise,
we do not care about the result). Hence such tasks are
also known as promise problems.
Another generalization is to consider relations that may
have more than one possible admissible output. For
example, consider the task of finding any solution for
a given set of equations. A relation 𝑅 maps a string
𝑥 ∈ {0, 1}∗ into a set of strings 𝑅(𝑥) (for example, 𝑥
might describe a set of equations, in which case 𝑅(𝑥)
would correspond to the set of all solutions to 𝑥). We
can also identify a relation 𝑅 with the set of pairs of
strings (𝑥, 𝑦) where 𝑦 ∈ 𝑅(𝑥). A computational pro-
cess solves a relation if for every 𝑥 ∈ {0, 1}∗, it outputs
some string 𝑦 ∈ 𝑅(𝑥).
Later in this book, we will consider even more general
tasks, including interactive tasks, such as finding a
good strategy in a game, tasks defined using proba-
bilistic notions, and others. However, for much of this
book, we will focus on the task of computing a func-
tion, and often even a Boolean function, that has only a
single bit of output. It turns out that a great deal of the
theory of computation can be studied in the context of
this task, and the insights learned are applicable in the
more general settings.

✓ Lecture Recap

• We can represent objects we want to compute on
using binary strings.

• A representation scheme for a set of objects 𝒪 is a
one-to-one map from 𝒪 to {0, 1}∗.

• We can use prefix-free encoding to “boost” a repre-
sentation for a set 𝒪 into representations of lists of
elements in 𝒪.

• A basic computational task is the task of computing
a function 𝐹 ∶ {0, 1}∗ → {0, 1}∗. This task encom-
passes not just arithmetical computations such
as multiplication, factoring, etc. but a great many
other tasks arising in areas as diverse as scientific
computing, artificial intelligence, image processing,
data mining and many many more.

• We will study the question of finding (or at least
giving bounds on) what is the best algorithm for
computing 𝐹 for various interesting functions 𝐹 .

112 introduction to theoretical computer science

2.6 EXERCISES

Exercise 2.1 Which one of these objects can be represented by a binary
string?

a. An integer 𝑥

b. An undirected graph 𝐺.

c. A directed graph 𝐻

d. All of the above.

�

Exercise 2.2 — Binary representation. a. Prove that the function 𝑁𝑡𝑆 ∶ ℕ →
{0, 1}∗ of the binary representation defined in (2.1) satisfies that for
every 𝑛 ∈ ℕ, if 𝑥 = 𝑁𝑡𝑆(𝑛) then |𝑥| = ⌊log2 𝑛⌋ and 𝑥𝑖 = ⌊𝑥/2|𝑥|−𝑖⌋
mod 2.

b. Prove that 𝑁𝑡𝑆 is a one to one function by coming up with a func-
tion 𝑆𝑡𝑁 ∶ {0, 1}∗ → ℕ such that 𝑆𝑡𝑁(𝑁𝑡𝑆𝑝(𝑛)) = 𝑛 for every
𝑛 ∈ ℕ.

�

Exercise 2.3 — More compact than ASCII representation. The ASCII encoding
can be used to encode a string of 𝑛 English letters as a 7𝑛 bit binary
string, but in this exercise, we ask about finding a more compact rep-
resentation for strings of English lowercase letters.

1. Prove that there exists a representation scheme (𝐸, 𝐷) for strings
over the 26-letter alphabet {𝑎, 𝑏, 𝑐, … , 𝑧} as binary strings such
that for every 𝑛 > 0 and length-𝑛 string 𝑥 ∈ {𝑎, 𝑏, … , 𝑧}𝑛, the
representation 𝐸(𝑥) is a binary string of length at most 4.8𝑛 + 1000.
In other words, prove that for every 𝑛, there exists a one-to-one
function 𝐸 ∶ {𝑎, 𝑏, … , 𝑧}𝑛 → {0, 1}⌊4.8𝑛+1000⌋.

2. Prove that there exists no representation scheme for strings over the
alphabet {𝑎, 𝑏, … , 𝑧} as binary strings such that for every length-𝑛
string 𝑥 ∈ {𝑎, 𝑏, … , 𝑧}𝑛, the representation 𝐸(𝑥) is a binary string of
length ⌊4.6𝑛 + 1000⌋. In other words, prove that there exists some
𝑛 > 0 such that there is no one-to-one function 𝐸 ∶ {𝑎, 𝑏, … , 𝑧}𝑛 →
{0, 1}⌊4.6𝑛+1000⌋

3. Python’s bz2.compress function is a mapping from strings to
strings, which uses the lossless (and hence one to one) bzip2 algo-
rithm for compression. After converting to lowercase, and truncat-
ing spaces and numbers, the text of Tolstoy’s “War and Peace” con-
tains 𝑛 = 2, 517, 262. Yet, if we run bz2.compress on the string of
the text of “War and Peace” we get a string of length 𝑘 = 6, 274, 768

https://en.wikipedia.org/wiki/Bzip2

computation and representation 113

11 Actually that particular fictional company uses a
metric that focuses more on compression speed then
ratio, see here and here.

bits, which is only 2.49𝑛 (and in particular much smaller than
4.6𝑛). Explain why this does not contradict your answer to the
previous question.

4. Interestingly, if we try to apply bz2.compress on a random string,
we get much worse performance. In my experiments, I got a ratio
of about 4.78 between the number of bits in the output and the
number of characters in the input. However, one could imagine that
one could do better and that there exists a company called “Pied
Piper” with an algorithm that can losslessly compress a string of 𝑛
random lowercase letters to fewer than 4.6𝑛 bits.11 Show that this
is not the case by proving that for every 𝑛 > 100 and one to one
function 𝐸𝑛𝑐𝑜𝑑𝑒 ∶ {𝑎, … , 𝑧}𝑛 → {0, 1}∗, if we let 𝑍 be the random
variable |𝐸𝑛𝑐𝑜𝑑𝑒(𝑥)| (i.e., the length of 𝐸𝑛𝑐𝑜𝑑𝑒(𝑥)) for 𝑥 chosen
uniformly at random from the set {𝑎, … , 𝑧}𝑛, then the expected
value of 𝑍 is at least 4.6𝑛.

�

Exercise 2.4 — Representing graphs: upper bound. Show that there is a string
representation of directed graphs with vertex set [𝑛] and degree at
most 10 that uses at most 1000𝑛 log𝑛 bits. More formally, show the
following. Suppose we define for every 𝑛 ∈ ℕ, the set 𝐺𝑛 as the set
containing all directed graphs (with no self loops) over the vertex
set [𝑛] where every vertex has degree at most 10. Then, prove that for
every sufficiently large 𝑛, there exists a one-to-one function 𝐸 ∶ 𝐺𝑛 →
{0, 1}⌊1000𝑛 log𝑛⌋.

�

Exercise 2.5 — Representing graphs: lower bound. 1. Define 𝑆𝑛 to be the
set of one-to-one and onto functions mapping [𝑛] to [𝑛]. Prove that
there is a one-to-one mapping from 𝑆𝑛 to 𝐺2𝑛, where 𝐺2𝑛 is the set
defined in Exercise 2.4 above.

2. In this question you will show that one cannot improve the rep-
resentation of Exercise 2.4 to length 𝑜(𝑛 log𝑛). Specifically, prove
for every sufficiently large 𝑛 ∈ ℕ there is no one-to-one function
𝐸 ∶ 𝐺𝑛 → {0, 1}⌊0.001𝑛 log𝑛⌋+1000.

�

Exercise 2.6 — Multiplying in different representation. Recall that the grade-
school algorithm for multiplying two numbers requires 𝑂(𝑛2) oper-
ations. Suppose that instead of using decimal representation, we use
one of the following representations 𝑅(𝑥) to represent a number 𝑥
between 0 and 10𝑛 − 1. For which one of these representations you can
still multiply the numbers in 𝑂(𝑛2) operations?

https://blogs.dropbox.com/tech/2016/06/lossless-compression-with-brotli/
https://www.jefftk.com/p/weissman-scores-useful

114 introduction to theoretical computer science

a. The standard binary representation: 𝐵(𝑥) = (𝑥0, … , 𝑥𝑘) where
𝑥 = ∑𝑘

𝑖=0 𝑥𝑖2𝑖 and 𝑘 is the largest number s.t. 𝑥 ≥ 2𝑘.

b. The reverse binary representation: 𝐵(𝑥) = (𝑥𝑘, … , 𝑥0) where 𝑥𝑖 is
defined as above for 𝑖 = 0, … , 𝑘 − 1.

c. Binary coded decimal representation: 𝐵(𝑥) = (𝑦0, … , 𝑦𝑛−1) where
𝑦𝑖 ∈ {0, 1}4 represents the 𝑖𝑡ℎ decimal digit of 𝑥 mapping 0 to 0000,
1 to 0001, 2 to 0010, etc. (i.e. 9 maps to 1001)

d. All of the above.

�

Exercise 2.7 Suppose that 𝑅 ∶ ℕ → {0, 1}∗ corresponds to representing a
number 𝑥 as a string of 𝑥 1’s, (e.g., 𝑅(4) = 1111, 𝑅(7) = 1111111, etc.).
If 𝑥, 𝑦 are numbers between 0 and 10𝑛 − 1, can we still multiply 𝑥 and
𝑦 using 𝑂(𝑛2) operations if we are given them in the representation
𝑅(⋅)?

�

Exercise 2.8 Recall that if 𝐹 is a one-to-one and onto function mapping
elements of a finite set 𝑈 into a finite set 𝑉 then the sizes of 𝑈 and 𝑉
are the same. Let 𝐵 ∶ ℕ → {0, 1}∗ be the function such that for every
𝑥 ∈ ℕ, 𝐵(𝑥) is the binary representation of 𝑥.
1. Prove that 𝑥 < 2𝑘 if and only if |𝐵(𝑥)| ≤ 𝑘.

2. Use 1. to compute the size of the set {𝑦 ∈ {0, 1}∗ ∶ |𝑦| ≤ 𝑘} where |𝑦|
denotes the length of the string 𝑦.

3. Use 1. and 2. to prove that 2𝑘 − 1 = 1 + 2 + 4 + ⋯ + 2𝑘−1.

�

Exercise 2.9 — Prefix-free encoding of tuples. Suppose that 𝐹 ∶ ℕ → {0, 1}∗

is a one-to-one function that is prefix-free in the sense that there is no
𝑎 ≠ 𝑏 s.t. 𝐹(𝑎) is a prefix of 𝐹(𝑏).
a. Prove that 𝐹2 ∶ ℕ × ℕ → {0, 1}∗, defined as 𝐹2(𝑎, 𝑏) = 𝐹(𝑎)𝐹(𝑏) (i.e.,

the concatenation of 𝐹(𝑎) and 𝐹(𝑏)) is a one-to-one function.

b. Prove that 𝐹∗ ∶ ℕ∗ → {0, 1}∗ defined as 𝐹∗(𝑎1, … , 𝑎𝑘) =
𝐹(𝑎1) ⋯ 𝐹(𝑎𝑘) is a one-to-one function, where ℕ∗ denotes the set of
all finite-length lists of natural numbers.

�

Exercise 2.10 — More efficient prefix-free transformation. Suppose that 𝐹 ∶
𝑂 → {0, 1}∗ is some (not necessarily prefix-free) representation of the
objects in the set 𝑂, and 𝐺 ∶ ℕ → {0, 1}∗ is a prefix-free representa-
tion of the natural numbers. Define 𝐹 ′(𝑜) = 𝐺(|𝐹(𝑜)|)𝐹(𝑜) (i.e., the
concatenation of the representation of the length 𝐹(𝑜) and 𝐹(𝑜)).

computation and representation 115

12 Hint: Think recursively how to represent the length
of the string.

a. Prove that 𝐹 ′ is a prefix-free representation of 𝑂.

b. Show that we can transform any representation to a prefix-free one
by a modification that takes a 𝑘 bit string into a string of length at
most 𝑘 + 𝑂(log 𝑘).

c. Show that we can transform any representation to a prefix-free one
by a modification that takes a 𝑘 bit string into a string of length at
most 𝑘 + log 𝑘 + 𝑂(log log 𝑘).12

�

Exercise 2.11 — Kraft’s Inequality. Suppose that 𝑆 ⊆ {0, 1}𝑛 is some finite
prefix-free set.

a. For every 𝑘 ≤ 𝑛 and length-𝑘 string 𝑥 ∈ 𝑆, let 𝐿(𝑥) ⊆ {0, 1}𝑛 denote
all the length-𝑛 strings whose first 𝑘 bits are 𝑥0, … , 𝑥𝑘−1. Prove that
(1) |𝐿(𝑥)| = 2𝑛−|𝑥| and (2) If 𝑥 ≠ 𝑥′ then 𝐿(𝑥) is disjoint from
𝐿(𝑥′).

b. Prove that ∑𝑥∈𝑆 2−|𝑥| ≤ 1.

c. Prove that there is no prefix-free encoding of strings with less than
logarithmic overhead. That is, prove that there is no function PF ∶
{0, 1}∗ → {0, 1}∗ s.t. |PF(𝑥)| ≤ |𝑥| + 0.9 log |𝑥| for every 𝑥 ∈ {0, 1}∗

and such that the set {PF(𝑥) ∶ 𝑥 ∈ {0, 1}∗} is prefix-free. The factor
0.9 is arbitrary; all that matters is that it is less than 1.

�

Exercise 2.12 — Composition of one-to-one functions. Prove that for every
two one-to-one functions 𝐹 ∶ 𝑆 → 𝑇 and 𝐺 ∶ 𝑇 → 𝑈 , the function
𝐻 ∶ 𝑆 → 𝑈 defined as 𝐻(𝑥) = 𝐺(𝐹(𝑥)) is one to one.

�

Exercise 2.13 — Natural numbers and strings. 1. We have shown that
the natural numbers can be represented as strings. Prove that
the other direction holds as well: that there is a one-to-one map
𝑆𝑡𝑁 ∶ {0, 1}∗ → ℕ. (𝑆𝑡𝑁 stands for “strings to numbers.”)

2. Recall that Cantor proved that there is no one-to-one map 𝑅𝑡𝑁 ∶
ℝ → ℕ. Show that Cantor’s result implies Theorem 2.5.

�

Exercise 2.14 — Map lists of integers to a number. Recall that for every set
𝑆, the set 𝑆∗ is defined as the set of all finite sequences of mem-
bers of 𝑆 (i.e., 𝑆∗ = {(𝑥0, … , 𝑥𝑛−1) | 𝑛 ∈ ℕ , ∀𝑖∈[𝑛]𝑥𝑖 ∈ 𝑆}).
Prove that there is a one-one-map from ℤ∗ to ℕ where ℤ is the set of
{… , −3, −2, −1, 0, +1, +2, +3, …} of all integers.

�

116 introduction to theoretical computer science

2.7 BIBLIOGRAPHICAL NOTES

The study of representing data as strings, including issues such as
compression and error corrections falls under the purview of information
theory, as covered in the classic textbook of Cover and Thomas [CT06].
Representations are also studied in the field of data structures design, as
covered in texts such as [Cor+09].

The question of whether to represent integers with most significant
digit first or last is known as Big Endian vs. Little Endian represen-
tation. This terminology comes from Cohen’s [Coh81] entertaining
and informative paper about the conflict between adherents of both
schools which he compared to the warring tribes in Jonathan Swift’s
“Gulliver’s Travels”. The two’s complement representation of signed
integers was suggested in von Neumann’s classic report [Neu45]
that detailed the design approaches for a stored-program computer,
though similar representations have been used even earlier in abacus
and other mechanical computation devices.

The idea that we should separate the definition or specification of
a function from its implementation or computation might seem “obvi-
ous,” but it took quite a lot of time for mathematicians to arrive at this
viewpoint. Historically, a function 𝐹 was identified by rules or formu-
las showing how to derive the output from the input. As we discuss
in greater depth in Chapter 8, in the 1800s this somewhat informal
notion of a function started “breaking at the seams,” and eventually
mathematicians arrived at the more rigorous definition of a function
as an arbitrary assignment of input to outputs. While many functions
may be described (or computed) by one or more formulas, today we
do not consider that to be an essential property of functions, and also
allow functions that do not correspond to any “nice” formula.

We have mentioned that all representations of the real numbers
are inherently approximate. Thus an important endeavor is to under-
stand what guarantees we can offer on the approximation quality of
the output of an algorithm, as a function of the approximation quality
of the inputs. This question is known as the question of determining
the numerical stability of given equations. The Floating Points Guide
website contains an extensive description of the floating point repre-
sentation, as well the many ways in which it could subtly fail, see also
the website 0.30000000000000004.com.

Dauben [Dau90] gives a biography of Cantor with emphasis on
the development of his mathematical ideas. [Hal60] is a classic text-
book on set theory, including also Cantor’s theorem. Cantor’s Theo-
rem is also covered in many texts on discrete mathematics, including
[LehmanLeightonMeyer ; LewisZax19].

https://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
https://en.wikipedia.org/wiki/Numerical_stability
https://floating-point-gui.de/
https://floating-point-gui.de/
http://0.30000000000000004.com/

computation and representation 117

The adjacency matrix representation of graphs is not merely a con-
venient way to map a graph into a binary string, but it turns out that
many natural notions and operations on matrices are useful for graphs
as well. (For example, Google’s PageRank algorithm relies on this
viewpoint.) The notes of Spielman’s course are an excellent source for
this area, known as spectral graph theory. We will return to this view
much later in this book when we talk about random walks.

http://www.cs.yale.edu/homes/spielman/561/

I
FINITE COMPUTATION

	Preliminaries
	Computation and Representation
	Defining representations
	Representing natural numbers
	Meaning of representations (discussion)

	Representations beyond natural numbers
	Representing (potentially negative) integers
	Two's complement representation (optional)
	Rational numbers, and representing pairs of strings

	Representing real numbers
	Can we represent reals exactly?

	Representing objects beyond numbers
	Finite representations
	Prefix-free encoding
	Making representations prefix-free
	``Proof by Python'' (optional)
	Representing letters and text
	Representing vectors, matrices, images
	Representing graphs
	Representing lists and nested lists
	Notation

	Defining computational tasks as mathematical functions
	Distinguish functions from programs!

	Exercises
	Bibliographical notes

	I Finite computation

