
13
Polynomial-time reductions

Consider some of the problems we have encountered in Chapter 11:

1. The 3SAT problem: deciding whether a given 3CNF formula has a
satisfying assignment.

2. Finding the longest path in a graph.

3. Finding the maximum cut in a graph.

4. Solving quadratic equations over 𝑛 variables 𝑥0, … , 𝑥𝑛−1 ∈ ℝ.

All of these problems have the following properties:

• These are important problems, and people have spent significant
effort on trying to find better algorithms for them.

• Each one of these is a search problem, whereby we search for a
solution that is “good” in some easy to define sense (e.g., a long
path, a satisfying assignment, etc.).

• Each of these problems has a trivial exponential time algorithm that
involve enumerating all possible solutions.

• At the moment, for all these problems the best known algorithm is
not much faster than the trivial one in the worst case.

In this chapter and in Chapter 14 we will see that, despite their
apparent differences, we can relate the computational complexity of
these and many other problems. In fact, it turns out that the prob-
lem above are computationally equivalent, in the sense that solving one
of them immediately implies solving the others. This phenomenon,
known as NP completeness, is one of the surprising discoveries of the-
oretical computer science, and we will see that it has far-reaching
ramifications.

In this chapter we will see that for each one of the problems of find-
ing a longest path in a graph, solving quadratic equations, and finding

Compiled on 11.8.2019 18:41

Learning Objectives:
• Introduce the notion of polynomial-time

reductions as a way to relate the complexity of
problems to one another.

• See several examples of such reductions.
• 3SAT as a basic starting point for reductions.

434 introduction to theoretical computer science

Figure 13.1: In this chapter we show that if the 3SAT
problem cannot be solved in polynomial time, then
neither can the QUADEQ, LONGESTPATH, ISET
and MAXCUT problems. We do this by using the
reduction paradigm showing for example “if pigs could
whistle” (i.e., if we had an efficient algorithm for
QUADEQ) then “horses could fly” (i.e., we would
have an efficient algorithm for 3SAT.)

the maximum cut, if there exists a polynomial-time algorithm for this
problem then there exists a polynomial-time algorithm for the 3SAT
problem as well. In other words, we will reduce the task of solving
3SAT to each one of the above tasks. Another way to interpret these
results is that if there does not exist a polynomial-time algorithm for
3SAT then there does not exist a polynomial-time algorithm for these
other problems as well. In Chapter 14 we will see evidence (though
no proof!) that all of the above problems do not have polynomial-time
algorithms and hence are inherently intractable.

13.1 FORMAL DEFINITIONS OF PROBLEMS

For reasons of technical convenience rather than anything substantial,
we concern ourselves with decision problems (i.e., Yes/No questions) or
in other words Boolean (i.e., one-bit output) functions. We model the
problems above as functions mapping {0, 1}∗ to {0, 1} in the following
way:

3SAT. The 3SAT problem can be phrased as the function 3SAT ∶
{0, 1}∗ → {0, 1} that takes as input a 3CNF formula 𝜑 (i.e., a formula
of the form 𝐶0 ∧ ⋯ ∧ 𝐶𝑚−1 where each 𝐶𝑖 is the OR of three variables
or their negation) and maps 𝜑 to 1 if there exists some assignment to
the variables of 𝜑 that causes it to evalute to true, and to 0 otherwise.
For example

3SAT ("(𝑥0 ∨ 𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥0 ∨ 𝑥2 ∨ 𝑥3)") = 1 (13.1)

since the assignment 𝑥 = 1101 satisfies the input formula. In the
above we assume some representation of formulas as strings, and

polynomial-time reductions 435

Figure 13.2: If 𝐹 ≤𝑝 𝐺 then we can transform a
polynomial-time algorithm 𝐵 that computes 𝐺
into a polynomial-time algorithm 𝐴 that computes
𝐹 . To compute 𝐹(𝑥) we can run the reduction 𝑅
guaranteed by the fact that 𝐹 ≤𝑝 𝐺 to obtain 𝑦 =
𝐹(𝑥) and then run our algorithm 𝐵 for 𝐺 to compute
𝐺(𝑦).

define the function to output 0 if its input is not a valid representation;
we use the same convention for all the other functions below.

Quadratic equations. The quadratic equations problem corresponds to the
function QUADEQ ∶ {0, 1}∗ → {0, 1} that maps a set of quadratic
equations 𝐸 to 1 if there is an assignment 𝑥 that satisfies all equations,
and to 0 otherwise.

Longest path. The longest path problem corresponds to the function
LONGPATH ∶ {0, 1}∗ → {0, 1} that maps a graph 𝐺 and a number 𝑘
to 1 if there is a simple path in 𝐺 of length at least 𝑘, and maps (𝐺, 𝑘)
to 0 otherwise. The longest path problem is a generalization of the
well-known Hamiltonian Path Problem of determining whether a path
of length 𝑛 exists in a given 𝑛 vertex graph.

Maximum cut. The maximum cut problem corresponds to the function
MAXCUT ∶ {0, 1}∗ → {0, 1} that maps a graph 𝐺 and a number 𝑘 to
1 if there is a cut in 𝐺 that cuts at least 𝑘 edges, and maps (𝐺, 𝑘) to 0
otherwise.

All of the problems above are in EXP but it is not known whether
or not they are in P. However, we will see in this chapter that if either
QUADEQ , LONGPATH or MAXCUT are in P, then so is 3SAT.

13.2 POLYNOMIAL-TIME REDUCTIONS

Suppose that 𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1} are two functions. A polynomial-
time reduction (or sometimes just “reduction” for short) from 𝐹 to 𝐺
is a way to show that 𝐹 is “no harder” than 𝐺, in the sense that a
polynomial-time algorithm for 𝐺 implies a polynomial-time algorithm
for 𝐹 .

Definition 13.1 — Polynomial-time reductions. Let 𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1}∗.
We say that 𝐹 reduces to 𝐺, denoted by 𝐹 ≤𝑝 𝐺 if there is a
polynomial-time computable 𝑅 ∶ {0, 1}∗ → {0, 1}∗ such that
for every 𝑥 ∈ {0, 1}∗,

𝐹(𝑥) = 𝐺(𝑅(𝑥)) . (13.2)

We say that 𝐹 and 𝐺 have equivalent complexity if 𝐹 ≤𝑝 𝐺 and 𝐺 ≤𝑝
𝐹 .

The following exercise justifies our intuition that 𝐹 ≤𝑝 𝐺 signifies
that ”𝐹 is no harder than 𝐺.

Solved Exercise 13.1 — Reductions and P. Prove that if 𝐹 ≤𝑝 𝐺 and 𝐺 ∈ P
then 𝐹 ∈ P.

�

https://en.wikipedia.org/wiki/Hamiltonian_path_problem

436 introduction to theoretical computer science

P
As usual, solving this exercise on your own is an excel-
lent way to make sure you understand Definition 13.1.

Solution:

Suppose there was an algorithm 𝐵 that compute 𝐹 in time 𝑝(𝑛)
where 𝑝 is its input size. Then, (13.2) directly gives an algorithm
𝐴 to compute 𝐹 (see Fig. 13.2). Indeed, on input 𝑥 ∈ {0, 1}∗, Al-
gorithm 𝐴 will run the polynomial-time reduction 𝑅 to obtain
𝑦 = 𝑅(𝑥) and then return 𝐵(𝑦). By (13.2), 𝐺(𝑅(𝑥)) = 𝐹(𝑥) and
hence Algorithm 𝐴 will indeed compute 𝐹 .

We now show that 𝐴 runs in polynomial time. By assumption, 𝑅
can be computed in time 𝑞(𝑛) for some polynomial 𝑞. In particular,
this means that |𝑦| ≤ 𝑞(|𝑥|) (as just writing down 𝑦 takes |𝑦| steps).
This, computing 𝐵(𝑦) will take at most 𝑝(|𝑦|) ≤ 𝑝(𝑞(|𝑥|)) steps.
Thus the total running time of 𝐴 on inputs of length 𝑛 is at most
the time to compute 𝑦, which is bounded by 𝑞(𝑛), and the time to
compute 𝐵(𝑦), which is bounded by 𝑝(𝑞(𝑛)), and since the compo-
sition of two polynomials is a polynomial, 𝐴 runs in polynomial
time.

�

A reduction from 𝐹 to 𝐺 can be used for two purposes:

• If we already know an algorithm for 𝐺 and 𝐹 ≤𝑝 𝐺 then we can
use the reduction to obtain an algorithm for 𝐹 . This is a widely
used tool in algorithm design. For example in Section 11.1.4 we saw
how the Min-Cut Max-Flow theorem allows to reduce the task of
computing a minimum cut in a graph to the task of computing a
maximum flow in it.

• If we have proven (or have evidence) that there exists no polynomial-
time algorithm for 𝐹 and 𝐹 ≤𝑝 𝐺 then the existence of this reduction
allows us to concludes that there exists no polynomial-time algo-
rithm for 𝐺. This is the “if pigs could whistle then horses could
fly” interpretation we’ve seen in Section 8.4. We show that if there
was an hypothetical efficient algorithm for 𝐺 (a “whistling pig”)
then since 𝐹 ≤𝑝 𝐺 then there would be an efficient algorithm for
𝐹 (a “flying horse”). In this book we often use reductions for this
second purpose, although the lines between the two is sometimes
blurry (see the bibliographical notes in Section 13.8).

The most crucial difference between the notion in Definition 13.1
and the reductions we saw in the context of uncomputability (e.g.,
in Section 8.4) is that for relating time complexity of problems, we

polynomial-time reductions 437

need the reduction to be computable in polynomial time, as opposed to
merely computable. Definition 13.1 also restricts reductions to have a
very specific format. That is, to show that 𝐹 ≤𝑝 𝐺, rather than allow-
ing a general algorithm for 𝐹 that uses a “magic box” that computes
𝐺, we only allow an algorithm that computes 𝐹(𝑥) by outputting
𝐺(𝑅(𝑥)). This restricted form is convenient for us, but people have
defined and used more general reductions as well (see Section 13.8).

In this chapter we use reductions to relate the computational com-
plexity of the problems mentioned above: 3SAT, Quadratic Equations,
Maximum Cut, and Longest Path, as well as a few others. We will
reduce 3SAT to the latter problems, demonstrating that solving any
one of them efficiently will result in an efficient algorithm for 3SAT.
In Chapter 14 we show the other direction: reducing each one of these
problems to 3SAT in one fell swoop.

Transitivity of reductions. Since we think of 𝐹 ≤𝑝 𝐺 as saying that
(as far as polynomial-time computation is concerned) 𝐹 is “easier or
equal in difficulty to” 𝐺, we would expect that if 𝐹 ≤𝑝 𝐺 and 𝐺 ≤𝑝 𝐻 ,
then it would hold that 𝐹 ≤𝑝 𝐻 . Indeed this is the case:

Solved Exercise 13.2 — Transitivity of polynomial-time reductions. For every
𝐹, 𝐺, 𝐻 ∶ {0, 1}∗ → {0, 1}, if 𝐹 ≤𝑝 𝐺 and 𝐺 ≤𝑝 𝐻 then 𝐹 ≤𝑝 𝐻 .

�

Solution:

If 𝐹 ≤𝑝 𝐺 and 𝐺 ≤𝑝 𝐻 then there exist polynomial-time com-
putable functions 𝑅1 and 𝑅2 mapping {0, 1}∗ to {0, 1}∗ such that
for every 𝑥 ∈ {0, 1}∗, 𝐹(𝑥) = 𝐺(𝑅1(𝑥)) and for every 𝑦 ∈ {0, 1}∗,
𝐺(𝑦) = 𝐻(𝑅2(𝑦)). Combining these two equalities, we see that
for every 𝑥 ∈ {0, 1}∗, 𝐹(𝑥) = 𝐻(𝑅2(𝑅1(𝑥))) and so to show that
𝐹 ≤𝑝 𝐻 , it is sufficient to show that the map 𝑥 ↦ 𝑅2(𝑅1(𝑥)) is
computable in polynomial time. But if there are some constants 𝑐, 𝑑
such that 𝑅1(𝑥) is computable in time |𝑥|𝑐 and 𝑅2(𝑦) is computable
in time |𝑦|𝑑 then 𝑅2(𝑅1(𝑥)) is computable in time (|𝑥|𝑐)𝑑 = |𝑥|𝑐𝑑

which is polynomial.
�

13.3 REDUCING 3SAT TO ZERO ONE EQUATIONS

We will now show our first example of a reduction. The Zero-One Lin-
ear Equations problem corresponds to the function 01EQ ∶ {0, 1}∗ →
{0, 1} whose input is a collection 𝐸 of linear equations in variables
𝑥0, … , 𝑥𝑛−1, and the output is 1 iff there is an assignment 𝑥 ∈ {0, 1}𝑛

438 introduction to theoretical computer science

1 If you are familiar with matrix notation you may
note that such equations can be written as 𝐴𝑥 = b
where 𝐴 is an 𝑚 × 𝑛 matrix with entries in 0/1 and
b ∈ ℕ𝑚.

of 0/1 values to the variables that satisfies all the equations. For exam-
ple, if the input 𝐸 is a string encoding the set of equations

𝑥0 + 𝑥1 + 𝑥2 = 2
𝑥0 + 𝑥2 = 1
𝑥1 + 𝑥2 = 2

(13.3)

then 01EQ(𝐸) = 1 since the assignment 𝑥 = 011 satisfies all three
equations. We specifically restrict attention to linear equations in
variables 𝑥0, … , 𝑥𝑛−1 in which every equation has the form ∑𝑖∈𝑆 𝑥𝑖 =
𝑏 where 𝑆 ⊆ [𝑛] and 𝑏 ∈ ℕ.1

If we asked the question of whether there is a solution 𝑥 ∈ ℝ𝑛 of
real numbers to 𝐸, then this can be solved using the famous Gaussian
elimination algorithm in polynomial time. However, there is no known
efficient algorithm to solve 01EQ. Indeed, such an algorithm would
imply an algorithm for 3SAT as shown by the following theorem:

Theorem 13.2 — Hardness of 01𝐸𝑄. 3SAT ≤𝑝 01EQ

Proof Idea:

A constraint 𝑥2 ∨ 𝑥5 ∨ 𝑥7 can be written as 𝑥2 + (1 − 𝑥5) + 𝑥7 ≥ 1.
This is a linear inequality but since the sum on the left-hand side is
at most three, we can also turn it into an equality by adding two new
variables 𝑦, 𝑧 and writing it as 𝑥2 + (1 − 𝑥5) + 𝑥7 + 𝑦 + 𝑧 = 3. (We will
use fresh such variables 𝑦, 𝑧 for every constraint.) Finally, for every
variable 𝑥𝑖 we can add a variable 𝑥′

𝑖 corresponding to its negation by
adding the equation 𝑥𝑖 + 𝑥′

𝑖 = 1, hence mapping the original constraint
𝑥2 ∨ 𝑥5 ∨ 𝑥7 to 𝑥2 + 𝑥′

5 + 𝑥7 + 𝑦 + 𝑧 = 3. The main takeaway
technique from this reduction is the idea of adding auxiliary variables
to replace an equation such as 𝑥1 + 𝑥2 + 𝑥3 ≥ 1 that is not quite in the
form we want with the equivalent (for 0/1 valued variables) equation
𝑥1 + 𝑥2 + 𝑥3 + 𝑢 + 𝑣 = 3 which is in the form we want.

⋆

Figure 13.3: Left: Python code implementing the
reduction of 3SAT to 01EQ. Right: Example output of
the reduction. Code is in our repository.

Proof of Theorem 13.2. To prove the theorem we need to:

1. Describe an algorithm 𝑅 for mapping an input 𝜑 for 3SAT into an
input 𝐸 for 01EQ.

https://github.com/boazbk/tcscode

polynomial-time reductions 439

2. Prove that the algorithm runs in polynomial time.

3. Prove that 01EQ(𝑅(𝜑)) = 3SAT(𝜑) for every 3CNF formula 𝜑.

We now proceed to do just that. Since this is our first reduction, we
will spell out this proof in detail. However it straightforwardly follows
the proof idea.

Algorithm 13.3 — 3𝑆𝐴𝑇 to 01𝐸𝑄 reduction.

Input: 3CNF formula 𝜑 with 𝑛 variables 𝑥0, … , 𝑥𝑛−1 and 𝑚
clauses.

Output: Set 𝐸 of linear equations over 0/1 such that
3𝑆𝐴𝑇 (𝜑) = 1 -iff 01𝐸𝑄(𝐸) = 1.

1: Let 𝐸’s variables be 𝑥0, … , 𝑥𝑛−1, 𝑥′
0, … , 𝑥′

𝑛−1, 𝑦0, … , 𝑦𝑚−1,
𝑧0, … , 𝑧𝑚−1.

2: for 𝑖 ∈ [𝑛] do
3: add to 𝐸 the equation 𝑥𝑖 + 𝑥′

𝑖 = 1
4: end for
5: for j∈[m] do
6: Let 𝑗-th clause be 𝑤1 ∨ 𝑤2 ∨ 𝑤3 where 𝑤1, 𝑤2, 𝑤3 are

literals.
7: for 𝑎 ∈ [3] do
8: if 𝑤𝑎 is variable 𝑥𝑖 then
9: set 𝑡𝑎 ← 𝑥𝑖

10: end if
11: if 𝑤𝑎 is negation ¬𝑥𝑖 then
12: set 𝑡𝑎 ← 𝑥′

𝑖
13: end if
14: end for
15: Add to 𝐸 the equation 𝑡1 + 𝑡2 + 𝑡3 + 𝑦𝑗 + 𝑧𝑗 = 3.
16: end for
17: return 𝐸

The reduction is described in Algorithm 13.3, see also Fig. 13.3. If
the input formula has 𝑛 variable and 𝑚 steps, Algorithm 13.3 creates a
set 𝐸 of 𝑛+𝑚 equations over 2𝑛+2𝑚 variables. Algorithm 13.3 makes
an initial loop of 𝑛 steps (each taking constant time) and then another
loop of 𝑚 steps (each taking constant time) to create the equations,
and hence it runs in polynomial time.

Let 𝑅 be the function computed by Algorithm 13.3. The heart of
the proof is to show that for every 3CNF 𝜑, 01EQ(𝑅(𝜑)) = 3SAT(𝜑).
We split the proof into two parts. The first part, traditionally known
as the completeness property, is to show that if 3SAT(𝜑) = 1 then
𝑂1EQ(𝑅(𝜑)) = 1. The second part, traditionally known as the sound-
ness property, is to show that if 01EQ(𝑅(𝜑)) = 1 then 3SAT(𝜑) = 1.

440 introduction to theoretical computer science

(The names “completeness” and “soundness” derive viewing a so-
lution to 𝑅(𝜑) as a “proof” that 𝜑 is satisfiable, in which case these
conditions corresponds to completeness and soundness as defined
in Section 10.1.1. However, if you find the names confusing you can
simply think of completeness as the “1-instance maps to 1-instance”
property and soundness as the “0-instance maps to 0-instance” prop-
erty.)

We complete the proof by showing both parts:

• Completeness: Suppose that 3SAT(𝜑) = 1, which means that there
is an assignment 𝑥 ∈ {0, 1}𝑛 that satisfies 𝜑. We know that for
every clause 𝐶𝑗 in 𝜑 of the form 𝑤1 ∨ 𝑤2 ∨ 𝑤3 (with 𝑤1, 𝑤2, 𝑤3 being
literals), 𝑤1 +𝑤2 +𝑤3 ≥ 1, which means that we can assign values to
𝑦𝑗, 𝑧𝑗 in {0, 1} such that 𝑤1 +𝑤2 +𝑤3 +𝑦𝑗 +𝑧𝑗 = 3. This means that if
we let 𝑥′

𝑖 = 1 − 𝑥𝑖 for every 𝑖 ∈ [𝑛], then the assignment 𝑥0, … , 𝑥𝑛−1,
𝑥′

0, … , 𝑥′
𝑛−1, 𝑦0, … , 𝑦𝑚−1, 𝑧0, … , 𝑧𝑚−1 satisfies the equations 𝐸 =

𝑅(𝜑) and hence 01EQ(𝑅(𝜑)) = 1.

• Soundness: Suppose that the set of equations 𝐸 = 𝑅(𝜑) has a satis-
fying assignment 𝑥0, … , 𝑥𝑛−1, 𝑥′

0, … , 𝑥′
𝑛−1, 𝑦0, … , 𝑦𝑚−1, 𝑧0, … , 𝑧𝑚−1.

Then it must be the case that 𝑥′
𝑖 is the negation of 𝑥𝑖 for all 𝑖 ∈ [𝑛]

and since 𝑦𝑗 + 𝑧𝑗 ≤ 2 for every 𝑗 ∈ [𝑚], it must be the case that
for every clause 𝐶𝑗 in 𝜑 of the form 𝑤1 ∨ 𝑤2 ∨ 𝑤3 (with 𝑤1, 𝑤2, 𝑤3
being literals), 𝑤1 + 𝑤2 + 𝑤3 ≥ 1, which means that the assignment
𝑥0, … , 𝑥𝑛−1 satisfies 𝜑 and hence 3SAT(𝜑) = 1.

�

Anatomy of a reduction. A reduction is simply an algorithm, and like
any algorithm, when we come up with a reduction, it is not enough
to describe what the reduction does, but we also have to provide an
analysis of why it actually works. Specifically, to describe a reduction 𝑅
demonstrating that 𝐹 ≤𝑝 𝐺 we need to provide the following:

• Algorithm description: This is the description of how the algo-
rithm maps an input into the output. For example, Algorithm 13.3
above is the description of how we map an instance of 3SAT into an
instance of 01EQ in the reduction demonstrating 3SAT ≤𝑝 01EQ.

• Algorithm analysis: It is not enough to describe how the algorithm
works but we need to also explain why it works. In particular we
need to provide an analysis explaining why the reduction is both
efficient (i.e., runs in polynomial time) and correct (satisfies that
𝐺(𝑅(𝑥) = 𝐹(𝑥) for every 𝑥)). Specifically, the components of
analysis of a reduction 𝑅 include:

polynomial-time reductions 441

– Efficiency: We need to show that 𝑅 runs in polynomial time. In
most reductions we encounter this part is straightforward, as the
reductions we typically use involve a constant number of nested
loops, each involving a constant number of operations.

– Completeness: In a reduction 𝑅 demonstrating 𝐹 ≤𝑝 𝐺, the com-
pleteness condition is the condition that for every 𝑥 ∈ {0, 1}∗, if
𝐹(𝑥) = 1 then 𝐺(𝑅(𝑥)) = 1. Typically we construct the reduction
to ensure that this holds, by giving a way to map a “certificate/-
solution” certifying that 𝐹(𝑥) = 1 into a solution certifying that
𝐺(𝑅(𝑥)) = 1. For example in the proof of Theorem 13.2 the sat-
isfying assignment for the 3SAT formula 𝜑 can be mapped to a
solution to the set of equations 𝑅(𝜑).

– Soundness: This is the condition that if 𝐹(𝑥) = 0 then
𝐺(𝑅(𝑥)) = 0 or (taking the contrapositive) if 𝐺(𝑅(𝑥)) = 1 then
𝐹(𝑥) = 1. This is sometimes straightforward but can also be
harder to show than the completeness condition, and in more
advanced reductions (such as the reduction SAT ≤𝑝 ISET of
Theorem 13.5) demonstrating soundness is the main part of the
analysis.

Whenever you need to provide a reduction, you should make sure
that your description has all these components. While it is sometimes
tempting to weave together the description of the reduction and its
analysis, it is usually clearer if you separate the two, and also break
down the analysis to its three components of efficiency, completeness,
and soundness.

13.3.1 Quadratic equations
Now that we reduced 3SAT to 01EQ, we can use this to reduce 3SAT
to the quadratic equations problem. This is the function QUADEQ in
which the input is a list of 𝑛-variate polynomials 𝑝0, … , 𝑝𝑚−1 ∶ ℝ𝑛 → ℝ
that are all of degree at most two (i.e., they are quadratic) and with
integer coefficients. (The latter condition is for convenience and can
be achieved by scaling.) We define QUADEQ(𝑝0, … , 𝑝𝑚−1) to equal 1
if and only if there is a solution 𝑥 ∈ ℝ𝑛 to the equations 𝑝0(𝑥) = 0,
𝑝1(𝑥) = 0, …, 𝑝𝑚−1(𝑥) = 0.

For example, the following is a set of quadratic equations over the
variables 𝑥0, 𝑥1, 𝑥2:

𝑥2
0 − 𝑥0 = 0

𝑥2
1 − 𝑥1 = 0

𝑥2
2 − 𝑥2 = 0

1 − 𝑥0 − 𝑥1 + 𝑥0𝑥1 = 0

(13.4)

https://en.wikipedia.org/wiki/Degree_of_a_polynomial

442 introduction to theoretical computer science

You can verify that 𝑥 ∈ ℝ3 satisfies this set of equations if and only if
𝑥 ∈ {0, 1}3 and 𝑥0 ∨ 𝑥1 = 1.

Theorem 13.4 — Hardness of quadratic equations.

3SAT ≤𝑝 QUADEQ (13.5)

Proof Idea:

Using the transitivity of reductions (Solved Exercise 13.2), it is
enough to show that 01EQ ≤𝑝 QUADEQ, but this follows since we
can phrase the equation 𝑥𝑖 ∈ {0, 1} as the quadratic constraint 𝑥2

𝑖 −
𝑥𝑖 = 0. The takeaway technique of this reduction is that we can use
nonlinearity to force continuous variables (e.g., variables taking values
in ℝ) to be discrete (e.g., take values in {0, 1}).

⋆

Proof of Theorem 13.4. By Theorem 13.2 and Solved Exercise 13.2, it
is sufficient to prove that 01EQ ≤𝑝 QUADEQ. Let 𝐸 be an instance
of 01EQ with variables 𝑥0, … , 𝑥𝑚−1. We define 𝑅(𝐸) to be the set of
quadratic equations 𝐸′ that is obtained by taking the linear equations
in 𝐸 and adding to them the 𝑛 quadratic equations 𝑥2

𝑖 − 𝑥𝑖 = 0 for all
𝑖 ∈ [𝑛]. Clearly the map 𝐸 ↦ 𝐸′ can be computed in polynomial time.
We claim that 01EQ(𝐸) = 1 if and only if QUADEQ(𝐸′) = 1. Indeed,
the only difference between the two instances is that:

• In the 01EQ instance 𝐸, the equations are over variables 𝑥0, … , 𝑥𝑛−1
in {0, 1}.

• In the QUADEQ instance 𝐸′, the equations are overvariables
𝑥0, … , 𝑥𝑛−1 ∈ ℝ but we have the extra constraints 𝑥2

𝑖 − 𝑥𝑖 = 0
for all 𝑖 ∈ [𝑛].

Since for every 𝑎 ∈ ℝ, 𝑎2 − 𝑎 = 0 if and only if 𝑎 ∈ {0, 1}, the two
sets of equations are equivalent and 01EQ(𝐸) = QUADEQ(𝐸′) which
is what we wanted to prove.

�

13.4 THE INDEPENDENT SET PROBLEM

For a graph 𝐺 = (𝑉 , 𝐸), an independent set (also known as a stable
set) is a subset 𝑆 ⊆ 𝑉 such that there are no edges with both end-
points in 𝑆 (in other words, 𝐸(𝑆, 𝑆) = ∅). Every “singleton” (set
consisting of a single vertex) is trivially an independent set, but find-
ing larger independent sets can be challenging. The maximum indepen-
dent set problem (henceforth simply “independent set”) is the task of
finding the largest independent set in the graph. The independent set

https://en.wikipedia.org/wiki/Independent_set_(graph_theory)

polynomial-time reductions 443

Figure 13.4: An example of the reduction of 3SAT
to ISET for the case the original input formula is
𝜑 = (𝑥0 ∨𝑥1 ∨𝑥2)∧(𝑥0 ∨𝑥1 ∨𝑥2)∧(𝑥1 ∨𝑥2 ∨𝑥3). We
map each clause of 𝜑 to a triangle of three vertices,
each tagged above with “𝑥𝑖 = 0” or “𝑥𝑖 = 1”
depending on the value of 𝑥𝑖 that would satisfy the
particular literal. We put an edge between every two
literals that are conflicting (i.e., tagged with “𝑥𝑖 = 0”
and “𝑥𝑖 = 1” respectively).

problem is naturally related to scheduling problems: if we put an edge
between two conflicting tasks, then an independent set corresponds
to a set of tasks that can all be scheduled together without conflicts.
The independent set problem has been studied in a variety of settings,
including for example in the case of algorithms for finding structure in
protein-protein interaction graphs.

As mentioned in Section 13.1, we think of the independent set prob-
lem as the function ISET ∶ {0, 1}∗ → {0, 1} that on input a graph 𝐺
and a number 𝑘 outputs 1 if and only if the graph 𝐺 contains an in-
dependent set of size at least 𝑘. We now reduce 3SAT to Independent
set.

Theorem 13.5 — Hardness of Independent Set. 3SAT ≤𝑝 ISET.

Proof Idea:

The idea is that finding a satisfying assignment to a 3SAT formula
corresponds to satisfying many local constraints without creating
any conflicts. One can think of “𝑥17 = 0” and “𝑥17 = 1” as two
conflicting events, and of the constraints 𝑥17 ∨ 𝑥5 ∨ 𝑥9 as creating
a conflict between the events “𝑥17 = 0”, “𝑥5 = 1” and “𝑥9 = 0”,
saying that these three cannot simultaneosly co-occur. Using these
ideas, we can we can think of solving a 3SAT problem as trying to
schedule non conflicting events, though the devil is, as usual, in the
details. The takeaway technique here is to map each clause of the
original formula into a gadget which is a small subgraph (or more
generally “subinstance”) satisfying some convenient properties. We
will see these “gadgets” used time and again in the construction of
polynomial-time reductions.

⋆

Proof of Theorem 13.5. Given a 3SAT formula 𝜑 on 𝑛 variables and with
𝑚 clauses, we will create a graph 𝐺 with 3𝑚 vertices as follows. (See
Fig. 13.4 for an example and Fig. 13.5 for Python code.)

• A clause 𝐶 in 𝜑 has the form 𝐶 = 𝑦 ∨ 𝑦′ ∨ 𝑦″ where 𝑦, 𝑦′, 𝑦″ are
literals (variables or their negation). For each such clause 𝐶, we will
add three vertices to 𝐺, and label them (𝐶, 𝑦), (𝐶, 𝑦′), and (𝐶, 𝑦″)
respectively. We will also add the three edges between all pairs of
these vertices, so they form a triangle. Since there are 𝑚 clauses in 𝜑,
the graph 𝐺 will have 3𝑚 vertices.

• In addition to the above edges, we also add an edge between every
pair vertices of the form (𝐶, 𝑦) and (𝐶′, 𝑦′) where 𝑦 and 𝑦′ are con-
flicting literals. That is, we add an edge between (𝐶, 𝑦) and (𝐶, 𝑦′) if
there is an 𝑖 such that 𝑦 = 𝑥𝑖 and 𝑦′ = 𝑥𝑖 or vice versa.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919085/

444 introduction to theoretical computer science

The above construction of 𝐺 based on 𝜑 can clearly be carried out in
polynomial time. Hence to prove the theorem we need to show that 𝜑
is satisfiable if and only if 𝐺 contains an independent set of 𝑚 vertices.
We now show both directions of this equivalence:

Part 1: Completeness. The “completeness” direction is to show that
if 𝜑 has a satisfying assignment 𝑥∗, then 𝐺 has an independent set 𝑆∗

of 𝑚 vertices. Let us now show this.
Indeed, suppose that 𝜑 has a satisfying assignment 𝑥∗ ∈ {0, 1}𝑛.

Then for every clause 𝐶 = 𝑦 ∨ 𝑦′ ∨ 𝑦″ of 𝜑, one of the literals 𝑦, 𝑦′, 𝑦″

must evaluate to true under the assignment 𝑥∗ (as otherwise it would
not satisfy 𝜑). We let 𝑆 be a set of 𝑚 vertices that is obtained by choos-
ing for every clause 𝐶 one vertex of the form (𝐶, 𝑦) such that 𝑦 eval-
uates to true under 𝑥∗. (If there is more than one such vertex for the
same 𝐶, we arbitrarily choose one of them.)

We claim that 𝑆 is an independent set. Indeed, suppose otherwise
that there was a pair of vertices (𝐶, 𝑦) and (𝐶′, 𝑦′) in 𝑆 that have an
edge between them. Since we picked one vertex out of each triangle
corresponding to a clause, it must be that 𝐶 ≠ 𝐶′. Hence the only
way that there is an edge between (𝐶, 𝑦) and (𝐶, 𝑦′) is if 𝑦 and 𝑦′ are
conflicting literals (i.e. 𝑦 = 𝑥𝑖 and 𝑦′ = 𝑥𝑖 for some 𝑖). But that would
that they can’t both evaluate to true under the assignment 𝑥∗, which
contradicts the way we constructed the set 𝑆. This completes the proof
of the completeness condition.

Part 2: Soundness. The “soundness” direction is to show that if
𝐺 has an independent set 𝑆∗ of 𝑚 vertices, then 𝜑 has a satisfying
assignment 𝑥∗ ∈ {0, 1}𝑛. Let us now show this.

Indeed, suppose that 𝐺 has an independent set 𝑆∗ with 𝑚 vertices.
We will define an assignment 𝑥∗ ∈ {0, 1}𝑛 for the variables of 𝜑 as
follows. For every 𝑖 ∈ [𝑛], we set 𝑥∗

𝑖 according to the following rules:

• If 𝑆∗ contains a vertex of the form (𝐶, 𝑥𝑖) then we set 𝑥∗
𝑖 = 1.

• If 𝑆∗ contains a vertex of the form (𝐶, 𝑥𝑖) then we set 𝑥∗
𝑖 = 0.

• If 𝑆∗ does not contain a vertex of either of these forms, then it does
not matter which value we give to 𝑥∗

𝑖 , but for concreteness we’ll set
𝑥∗

𝑖 = 0.

The first observation is that 𝑥∗ is indeed well defined, in the sense
that the rules above do not conflict with one another, and ask to set 𝑥∗

𝑖
to be both 0 and 1. This follows from the fact that 𝑆∗ is an independent
set and hence if it contains a vertex of the form (𝐶, 𝑥𝑖) then it cannot
contain a vertex of the form (𝐶′, 𝑥𝑖).

We now claim that 𝑥∗ is a satisfying assignment for 𝜑. Indeed, since
𝑆∗ is an independent set, it cannot have more than one vertex inside
each one of the 𝑚 triangles (𝐶, 𝑦), (𝐶, 𝑦′), (𝐶, 𝑦″) corresponding to a

polynomial-time reductions 445

clause of 𝜑. Hence since |𝑆∗| = 𝑚, it must have exactly one vertex in
each such triangle. For every clause 𝐶 of 𝜑, if (𝐶, 𝑦) is the vertex in
𝑆∗ in the triangle corresponding to 𝐶, then by the way we defined 𝑥∗,
the literal 𝑦 must evaluate to true, which means that 𝑥∗ satisfies this
clause. Therefore 𝑥∗ satisfies all clauses of 𝜑, which is the definition of
a satisfying assignment.

This completes the proof of Theorem 13.5
�

Figure 13.5: The reduction of 3SAT to Independent Set.
On the righthand side is Python code that implements
this reduction. On the lefthand side is a sample
output of the reduction. We use black for the “triangle
edges” and red for the “conflict edges”. Note that the
satisfying assignment 𝑥∗ = 0110 corresponds to the
independent set (0, ¬𝑥3), (1, ¬𝑥0), (2, 𝑥2).

Solved Exercise 13.3 — Clique is equivalent to independent set. The maximum
clique problem corresponds to the function CLIQUE ∶ {0, 1}∗ → {0, 1}
such that for a graph 𝐺 and a number 𝑘, CLIQUE(𝐺, 𝑘) = 1 iff there
is a 𝑆 subset of 𝑘 vertices such that for every distinct 𝑢, 𝑣 ∈ 𝑆, the edge
𝑢, 𝑣 is in 𝐺. Such a set is known as a clique.

Prove that CLIQUE ≤𝑝 ISET and ISET ≤𝑝 CLIQUE.
�

Solution:

If 𝐺 = (𝑉 , 𝐸) is a graph, we denote by 𝐺 its complement which
is the graph on the same vertices 𝑉 and such that for every distinct
𝑢, 𝑣 ∈ 𝑉 , the edge {𝑢, 𝑣} is present in 𝐺 if and only if this edge is
not present in 𝐺.

This means that for every set 𝑆, 𝑆 is an independent set in 𝐺 if
and only if 𝑆 is a clique in 𝑆. Therefore for every 𝑘, ISET(𝐺, 𝑘) =
CLIQUE(𝐺, 𝑘). Since the map 𝐺 ↦ 𝐺 can be computed efficiently,
this yields a reduction ISET ≤𝑝 CLIQUE. Moreover, since 𝐺 = 𝐺
this yields a reduction in the other direction as well.

�

13.5 REDUCING INDEPENDENT SET TO MAXIMUM CUT

We now show that the independent set problem reduces to the maxi-
mum cut (or “max cut”) problem, modeled as the function MAXCUT

https://en.wikipedia.org/wiki/Clique_problem
https://en.wikipedia.org/wiki/Clique_problem

446 introduction to theoretical computer science

that on input a pair (𝐺, 𝑘) outputs 1 iff 𝐺 contains a cut of at least 𝑘
edges. Since both are graph problems, a reduction from independent
set to max cut maps one graph into the other, but as we will see the
output graph does not have to have the same vertices or edges as the
input graph.

Theorem 13.6 — Hardness of Max Cut. ISET ≤𝑝 MAXCUT

Proof Idea:

We will map a graph 𝐺 into a graph 𝐻 such that a large indepen-
dent set in 𝐺 becomes a partition cutting many edges in 𝐻 . We can
think of a cut in 𝐻 as coloring each vertex either “blue” or “red”. We
will add a special “source” vertex 𝑠∗, connect it to all other vertices,
and assume without loss of generality that it is colored blue. Hence
the more vertices we color red, the more edges from 𝑠∗ we cut. Now,
for every edge 𝑢, 𝑣 in the original graph 𝐺 we will add a special “gad-
get” which will be a small subgraph that involves 𝑢,𝑣, the source 𝑠∗,
and two other additional vertices. We design the gadget in a way so
that if the red vertices are not an independent set in 𝐺 then the cor-
responding cut in 𝐻 will be “penalized” in the sense that it would
not cut as many edges. Once we set for ourselves this objective, it is
not hard to find a gadget that achieves it− see the proof below. Once
again the takeaway technique is to use (this time a slightly more
clever) gadget.

⋆

Figure 13.6: In the reduction of ISET to MAXCUT
we map an 𝑛-vertex 𝑚-edge graph 𝐺 into the
𝑛 + 2𝑚 + 1 vertex and 𝑛 + 5𝑚 edge graph 𝐻 as
follows. The graph 𝐻 contains a special “source”
vertex 𝑠∗,𝑛 vertices 𝑣0, … , 𝑣𝑛−1, and 2𝑚 ver-
tices 𝑒0

0, 𝑒1
0, … , 𝑒0

𝑚−1, 𝑒1
𝑚−1 with each pair cor-

responding to an edge of 𝐺. We put an edge be-
tween 𝑠∗ and 𝑣𝑖 for every 𝑖 ∈ [𝑛], and if the 𝑡-th
edge of 𝐺 was (𝑣𝑖, 𝑣𝑗) then we add the five edges
(𝑠∗, 𝑒0

𝑡), (𝑠∗, 𝑒1
𝑡), (𝑣𝑖, 𝑒0

𝑡), (𝑣𝑗, 𝑒1
𝑡), (𝑒0

𝑡 , 𝑒1
𝑡). The intent

is that if cut at most one of 𝑣𝑖, 𝑣𝑗 from 𝑠∗ then we’ll
be able to cut 4 out of these five edges, while if we
cut both 𝑣𝑖 and 𝑣𝑗 from 𝑠∗ then we’ll be able to cut at
most three of them.

Proof of Theorem 13.6. We will transform a graph 𝐺 of 𝑛 vertices and 𝑚
edges into a graph 𝐻 of 𝑛 + 1 + 2𝑚 vertices and 𝑛 + 5𝑚 edges in the
following way (see also Fig. 13.6). The graph 𝐻 contains all vertices of
𝐺 (though not the edges between them!) and in addition 𝐻 also has:

* A special vertex 𝑠∗ that is connected to all the vertices of 𝐺

polynomial-time reductions 447

Figure 13.7: In the reduction of independent set to
max cut, for every 𝑡 ∈ [𝑚], we have a “gadget”
corresponding to the 𝑡-th edge 𝑒 = {𝑣𝑖, 𝑣𝑗} in the
original graph. If we think of the side of the cut
containing the special source vertex 𝑠∗ as “white” and
the other side as “blue”, then the leftmost and center
figures show that if 𝑣𝑖 and 𝑣𝑗 are not both blue then
we can cut four edges from the gadget. In contrast,
by enumerating all possibilities one can verify that if
both 𝑢 and 𝑣 are blue, then no matter how we color
the intermediate vertices 𝑒0

𝑡 , 𝑒1
𝑡 , we will cut at most

three edges from the gadget.

* For every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸(𝐺), two vertices 𝑒0, 𝑒1 such that 𝑒0
is connected to 𝑢 and 𝑒1 is connected to 𝑣, and moreover we add the
edges {𝑒0, 𝑒1}, {𝑒0, 𝑠∗}, {𝑒1, 𝑠∗} to 𝐻 .

Theorem 13.6 will follow by showing that 𝐺 contains an indepen-
dent set of size at least 𝑘 if and only if 𝐻 has a cut cutting at least
𝑘 + 4𝑚 edges. We now prove both directions of this equivalence:

Part 1: Completeness. If 𝐼 is an independent 𝑘-sized set in 𝐺, then
we can define 𝑆 to be a cut in 𝐻 of the following form: we let 𝑆 con-
tain all the vertices of 𝐼 and for every edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸(𝐺), if 𝑢 ∈ 𝐼
and 𝑣 ∉ 𝐼 then we add 𝑒1 to 𝑆; if 𝑢 ∉ 𝐼 and 𝑣 ∈ 𝐼 then we add 𝑒0 to
𝑆; and if 𝑢 ∉ 𝐼 and 𝑣 ∉ 𝐼 then we add both 𝑒0 and 𝑒1 to 𝑆. (We don’t
need to worry about the case that both 𝑢 and 𝑣 are in 𝐼 since it is an
independent set.) We can verify that in all cases the number of edges
from 𝑆 to its complement in the gadget corresponding to 𝑒 will be four
(see Fig. 13.7). Since 𝑠∗ is not in 𝑆, we also have 𝑘 edges from 𝑠∗ to 𝐼 ,
for a total of 𝑘 + 4𝑚 edges.

Part 2: Soundness. Suppose that 𝑆 is a cut in 𝐻 that cuts at least
𝐶 = 𝑘 + 4𝑚 edges. We can assume that 𝑠∗ is not in 𝑆 (otherwise we
can “flip” 𝑆 to its complement 𝑆, since this does not change the size
of the cut). Now let 𝐼 be the set of vertices in 𝑆 that correspond to
the original vertices of 𝐺. If 𝐼 was an independent set of size 𝑘 then
would be done. This might not always be the case but we will see that
if 𝐼 is not an independent set then it’s also larger than 𝑘. Specifically,
we define 𝑚𝑖𝑛 = |𝐸(𝐼, 𝐼)| be the set of edges in 𝐺 that are contained
in 𝐼 and let 𝑚𝑜𝑢𝑡 = 𝑚 − 𝑚𝑖𝑛 (i.e., if 𝐼 is an independent set then
𝑚𝑖𝑛 = 0 and 𝑚𝑜𝑢𝑡 = 𝑚). By the properties of our gadget we know
that for every edge {𝑢, 𝑣} of 𝐺, we can cut at most three edges when
both 𝑢 and 𝑣 are in 𝑆, and at most four edges otherwise. Hence the
number 𝐶 of edges cut by 𝑆 satisfies 𝐶 ≤ |𝐼| + 3𝑚𝑖𝑛 + 4𝑚𝑜𝑢𝑡 =
|𝐼| + 3𝑚𝑖𝑛 + 4(𝑚 − 𝑚𝑖𝑛) = |𝐼| + 4𝑚 − 𝑚𝑖𝑛. Since 𝐶 = 𝑘 + 4𝑚 we
get that |𝐼| − 𝑚𝑖𝑛 ≥ 𝑘. Now we can transform 𝐼 into an independent
set 𝐼′ by going over every one of the 𝑚𝑖𝑛 edges that are inside 𝐼 and
removing one of the endpoints of the edge from it. The resulting set 𝐼′

is an independent set in the graph 𝐺 of size |𝐼| − 𝑚𝑖𝑛 ≥ 𝑘 and so this
concludes the proof of the soundness condition.

�

13.6 REDUCING 3SAT TO LONGEST PATH

Note: This section is still a little messy; feel free to skip it or just read
it without going into the proof details. The proof appears in Section
7.5 in Sipser’s book.

One of the most basic algorithms in Computer Science is Dijkstra’s
algorithm to find the shortest path between two vertices. We now show

448 introduction to theoretical computer science

Figure 13.8: The reduction of independent set to
max cut. On the righthand side is Python code
implementing the reduction. On the lefthand side is
an example output of the reduction where we apply
it to the independent set instance that is obtained by
running the reduction of Theorem 13.5 on the 3CNF
formula (𝑥0 ∨𝑥3 ∨𝑥2)∧(𝑥0 ∨𝑥1 ∨𝑥2)∧(𝑥1 ∨𝑥2 ∨𝑥3).

Figure 13.9: We can transform a 3SAT formula 𝜑 into
a graph 𝐺 such that the longest path in the graph 𝐺
would correspond to a satisfying assignment in 𝜑. In
this graph, the black colored part corresponds to the
variables of 𝜑 and the blue colored part corresponds
to the vertices. A sufficiently long path would have to
first “snake” through the black part, for each variable
choosing either the “upper path” (corresponding
to assigning it the value True) or the “lower path”
(corresponding to assigning it the value False). Then
to achieve maximum length the path would traverse
through the blue part, where to go between two
vertices corresponding to a clause such as 𝑥17 ∨ 𝑥32 ∨
𝑥57, the corresponding vertices would have to have
been not traversed before.

Figure 13.10: The graph above with the longest path
marked on it, the part of the path corresponding to
variables is in green and part corresponding to the
clauses is in pink.

that in contrast, an efficient algorithm for the longest path problem
would imply a polynomial-time algorithm for 3SAT.

Theorem 13.7 — Hardness of longest path.

3SAT ≤𝑝 LONGPATH (13.6)

Proof Idea:

To prove Theorem 13.7 need to show how to transform a 3CNF for-
mula 𝜑 into a graph 𝐺 and two vertices 𝑠, 𝑡 such that 𝐺 has a path of
length at least 𝑘 if and only if 𝜑 is satisfiable. The idea of the reduction
is sketched in Fig. 13.9 and Fig. 13.10. We will construct a graph that
contains a potentially long “snaking path” that corresponds to all vari-
ables in the formula. We will add a “gadget” corresponding to each
clause of 𝜑 in a way that we would only be able to use the gadgets if
we have a satisfying assignment.

⋆

Proof of Theorem 13.7. We build a graph 𝐺 that “snakes” from 𝑠 to 𝑡 as
follows. After 𝑠 we add a sequence of 𝑛 long loops. Each loop has an
“upper path” and a “lower path”. A simple path cannot take both the
upper path and the lower path, and so it will need to take exactly one
of them to reach 𝑠 from 𝑡.

Our intention is that a path in the graph will correspond to an as-
signment 𝑥 ∈ {0, 1}𝑛 in the sense that taking the upper path in the 𝑖𝑡ℎ

loop corresponds to assigning 𝑥𝑖 = 1 and taking the lower path cor-
responds to assigning 𝑥𝑖 = 0. When we are done snaking through all
the 𝑛 loops corresponding to the variables to reach 𝑡 we need to pass
through 𝑚 “obstacles”: for each clause 𝑗 we will have a small gad-
get consisting of a pair of vertices 𝑠𝑗, 𝑡𝑗 that have three paths between
them. For example, if the 𝑗𝑡ℎ clause had the form 𝑥17 ∨ 𝑥55 ∨ 𝑥72 then
one path would go through a vertex in the lower loop corresponding
to 𝑥17, one path would go through a vertex in the upper loop corre-
sponding to 𝑥55 and the third would go through the lower loop cor-

polynomial-time reductions 449

responding to 𝑥72. We see that if we went in the first stage according
to a satisfying assignment then we will be able to find a free vertex to
travel from 𝑠𝑗 to 𝑡𝑗. We link 𝑡1 to 𝑠2, 𝑡2 to 𝑠3, etc and link 𝑡𝑚 to 𝑡. Thus
a satisfying assignment would correspond to a path from 𝑠 to 𝑡 that
goes through one path in each loop corresponding to the variables,
and one path in each loop corresponding to the clauses. We can make
the loop corresponding to the variables long enough so that we must
take the entire path in each loop in order to have a fighting chance of
getting a path as long as the one corresponds to a satisfying assign-
ment. But if we do that, then the only way if we are able to reach 𝑡 is
if the paths we took corresponded to a satisfying assignment, since
otherwise we will have one clause 𝑗 where we cannot reach 𝑡𝑗 from 𝑠𝑗
without using a vertex we already used before.

�

13.6.1 Summary of relations
We have shown that there are a number of functions 𝐹 for which we
can prove a statement of the form “If 𝐹 ∈ P then 3SAT ∈ P”. Hence
coming up with a polynomial-time algorithm for even one of these
problems will entail a polynomial-time algorithm for 3SAT (see for
example Fig. 13.11). In Chapter 14 we will show the inverse direction
(“If 3SAT ∈ P then 𝐹 ∈ P”) for these functions, hence allowing us to
conclude that they have equivalent complexity to 3SAT.

Figure 13.11: So far we have shown that P ⊆ EXP
and that several problems we care about such as
3SAT and MAXCUT are in EXP but it is not known
whether or not they are in EXP. However, since
3SAT ≤𝑝 MAXCUT we can rule out the possiblity
that MAXCUT ∈ P but 3SAT ∉ P. The relation of
P/poly to the class EXP is not known. We know that
EXP does not contain P/poly since the latter even
contains uncomputable functions, but we do not
know whether ot not EXP ⊆ P/poly (though it is
believed that this is not the case and in particular that
both 3SAT and MAXCUT are not in P/poly).✓ Lecture Recap

• The computational complexity of many seemingly
unrelated computational problems can be related
to one another through the use of reductions.

• If 𝐹 ≤𝑝 𝐺 then a polynomial-time algorithm
for 𝐺 can be transformed into a polynomial-time
algorithm for 𝐹 .

• Equivalently, if 𝐹 ≤𝑝 𝐺 and 𝐹 does not have a
polynomial-time algorithm then neither does 𝐺.

• We’ve developed many techniques to show that
3SAT ≤𝑝 𝐹 for interesting functions 𝐹 . Sometimes
we can do so by using transitivity of reductions: if
3SAT ≤𝑝 𝐺 and 𝐺 ≤𝑝 𝐹 then 3SAT ≤𝑝 𝐹 .

450 introduction to theoretical computer science

13.7 EXERCISES

13.8 BIBLIOGRAPHICAL NOTES

Several notions of reductions are defined in the literature. The notion
defined in Definition 13.1 is often known as a mapping reduction, many
to one reduction or a Karp reduction.

The maximal (as opposed to maximum) independent set is the task
of finding a “local maximum” of an independent set: an independent
set 𝑆 such that one cannot add a vertex to it without losing the in-
dependence property (such a set is known as a vertex cover). Unlike
finding a maximum independent set, finding a maximal independent
set can be done efficiently by a greedy algorithm, but this local maxi-
mum can be much smaller than the global maximum.

Reduction of independent set to max cut taken from these notes.
Image of Hamiltonian Path through Dodecahedron by Christoph
Sommer.

We have mentioned that the line between reductions used for algo-
rithm design and showing hardness is sometimes blurry. An excellent
example for this is the area of SAT Solvers (see [Gom+08]). In this
field people use algorithms for SAT (that take exponential time in the
worst case but often are much faster on many instances in practice)
together with reductions of the form 𝐹 ≤𝑝 SAT to derive algorithms
for other functions 𝐹 of interest.

https://people.engr.ncsu.edu/mfms/Teaching/CSC505/wrap/Lectures/week14.pdf
https://commons.wikimedia.org/wiki/File:Hamiltonian_path.svg
https://commons.wikimedia.org/wiki/File:Hamiltonian_path.svg

	III Efficient algorithms
	Polynomial-time reductions
	Formal definitions of problems
	Polynomial-time reductions
	Reducing 3SAT to zero one equations
	Quadratic equations

	The independent set problem
	Reducing Independent Set to Maximum Cut
	Reducing 3SAT to Longest Path
	Summary of relations

	Exercises
	Bibliographical notes

