
12
Modeling running time

“When the measure of the problem-size is reason-
able and when the sizes assume values arbitrarily
large, an asymptotic estimate of … the order of diffi-
culty of [an] algorithm .. is theoretically important.
It cannot be rigged by making the algorithm arti-
ficially difficult for smaller sizes”, Jack Edmonds,
“Paths, Trees, and Flowers”, 1963

Max Newman: It is all very well to say that a ma-
chine could … do this or that, but … what about the
time it would take to do it?
Alan Turing: To my mind this time factor is the one
question which will involve all the real technical
difficulty.
BBC radio panel on “Can automatic Calculating
Machines Be Said to Think?”, 1952

In Chapter 11 we saw examples of efficient algorithms, and made
some claims about their running time, but did not give a mathemati-
cally precise definition for this concept. We do so in this chapter, using
the models of Turing machines and RAM machines (or equivalently
NAND-TM and NAND-RAM) we have seen before. The running
time of an algorithm is not a fixed number since any non-trivial algo-
rithm will take longer to run on longer inputs. Thus, what we want
to measure is the dependence between the number of steps the algo-
rithms takes and the length of the input. In particular we care about
the distinction between algorithms that take at most polynomial time
(i.e., 𝑂(𝑛𝑐) time for some constant 𝑐) and problems for which every
algorithm requires at least exponential time (i.e., Ω(2𝑛𝑐) for some 𝑐). As
mentioned in Edmond’s quote in Chapter 11, the difference between
these two can sometimes be as important as the difference between
being computable and uncomputable.

Compiled on 11.8.2019 18:41

Learning Objectives:
• Formally modeling running time, and in

particular notions such as 𝑂(𝑛) or 𝑂(𝑛3) time
algorithms.

• The classes P and EXP modelling polynomial
and exponential time respectively.

• The time hierarchy theorem, that in particular
says that for every 𝑘 ≥ 1 there are functions
we can compute in 𝑂(𝑛𝑘+1) time but can not
compute in 𝑂(𝑛𝑘) time.

• The class P/poly of non uniform computation
and the result that P ⊆ P/poly

402 introduction to theoretical computer science

Figure 12.1: Overview of the results of this chapter.

In this chapter we formally define the notion of a function being
computable in 𝑇 (𝑛) time where 𝑇 is some function mapping the
length of the input to a bound on the number of computation steps.
We then do the following (see also Fig. 12.1):

• Define the class P of Boolean functions that can be computed in
polynomial time and its superset EXP of functions that can be com-
puted in exponential time.

• Show that the time to compute a function using a Turing Machine
and using a RAM machine (or NAND-RAM program) is polyno-
mially related which in particular means that the classes P and EXP
can be equivalently defined using either Turing Machines or RAM
machines / NAND-RAM programs.

• Give an efficient universal NAND-RAM program and use this to
establish the time hierarchy theorem that in particular implies that
P ⊊ EXP.

• We relate the notions defined here to the non uniform models of
Boolean circuits and NAND-CIRC programs defined in Chapter 3.
We define P/poly to be the class of functions computed by a sequence
of polynomial-sized circuits. We prove that P ⊆ P/poly and that
P/poly contains uncomputable functions.

12.1 FORMALLY DEFINING RUNNING TIME

Our models of computation such Turing Machines, NAND-TM and
NAND-RAM programs and others all operate by executing a se-
quence of instructions on an input one step at a time. We can define

modeling running time 403

Figure 12.2: Comparing 𝑇 (𝑛) = 10𝑛3 with 𝑇 ′(𝑛) =
2𝑛 (on the right figure the Y axis is in log scale).
Since for every large enough 𝑛, 𝑇 ′(𝑛) ≥ 𝑇 (𝑛),
TIMETM(𝑇 (𝑛)) ⊆ TIMETM(𝑇 ′(𝑛)).

the running time of an algorithm 𝑀 in one of these models by measur-
ing the number of steps 𝑀 takes on input 𝑥 as a function of the length
|𝑥| of the input. We start by defining running time with respect to Tur-
ing Machines:

Definition 12.1 — Running time (Turing Machines). Let 𝑇 ∶ ℕ → ℕ be
some function mapping natural numbers to natural numbers. We
say that a function 𝐹 ∶ {0, 1}∗ → {0, 1}∗ is computable in 𝑇 (𝑛)
Single-Tape-Turing-Machine time (TM-time for short) if there exists
a Turing Machine 𝑀 such that for every sufficiently large 𝑛 and
every 𝑥 ∈ {0, 1}𝑛, when given input 𝑥, the machine 𝑀 halts after
executing at most 𝑇 (𝑛) steps and outputs 𝐹(𝑥).

We define TIMETM(𝑇 (𝑛)) to be the set of Boolean functions
(functions mapping {0, 1}∗ to {0, 1}) that are computable in 𝑇 (𝑛)
TM time.

P
Definition 12.1 is not very complicated but is one of
the most important definitions of this book. As usual,
TIMETM(𝑇 (𝑛)) is a class of functions, not of machines. If
𝑀 is a Turing Machine then a statement such as “𝑀 is
a member of TIMETM(𝑛2)” does not make sense.

The relaxation of considering only “sufficiently large” 𝑛’s is not
very important but it is convenient since it allows us to avoid dealing
explicitly with un-interesting “edge cases”. In most cases we will
anyway be interested in determining running time only up to constant
and even polynomial factors. Note that we can always compute a
function on a finite number of inputs using a lookup table.

While the notion of being computable within a certain running time
can be defined for every function, the class TIMETM(𝑇 (𝑛)) is a class
of Boolean functions that have a single bit of output. This choice is not
very important, but is made for simplicity and convenience later on.
In fact, every non-Boolean function has a computationally equivalent
Boolean variant, see Exercise 12.3.

Solved Exercise 12.1 — Example of time bounds. Prove that TIMETM(10⋅𝑛3) ⊆
TIMETM(2𝑛).

�

Solution:

The proof is illustrated in Fig. 12.2. Suppose that 𝐹 ∈ TIMETM(10⋅
𝑛3) and hence there some number 𝑁0 and a machine 𝑀 such that
for every 𝑛 > 𝑁0, and 𝑥 ∈ {0, 1}∗, 𝑀(𝑥) outputs 𝐹(𝑥) within at

404 introduction to theoretical computer science

most 10 ⋅ 𝑛3 steps. Since 10 ⋅ 𝑛3 = 𝑜(2𝑛), there is some number
𝑁1 such that for every 𝑛 > 𝑁1, 10 ⋅ 𝑛3 < 2𝑛. Hence for every
𝑛 > max{𝑁0, 𝑁1}, 𝑀(𝑥) will output 𝐹(𝑥) within at most 2𝑛 steps,
just demonstrating that 𝐹 ∈ TIMETM(2𝑛).

�

12.1.1 Polynomial and Exponential Time
Unlike the notion of computability, the exact running time can be a
function of the model we use. However, it turns out that if we only
care about “coarse enough” resolution (as will most often be the case)
then the choice of the model, whether Turing Machines, RAM ma-
chines, NAND-TM/NAND-RAM programs, or C/Python programs,
does not matter. This is known as the extended Church-Turing Thesis.
Specifically we will mostly care about the difference between polyno-
mial and exponential time.

The two main time complexity classes we will be interested in are
the following:

• Polynomial time: A function 𝐹 ∶ {0, 1}∗ → {0, 1} is computable in
polynomial time if it is in the class P = ∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐). That
is, 𝐹 ∈ P if there is an algorithm to compute 𝐹 that runs in time at
most polynomial (i.e., at most 𝑛𝑐 for some constant 𝑐) in the length
of the input.

• Exponential time: A function 𝐹 ∶ {0, 1}∗ → {0, 1} is computable in
exponential time if it is in the class EXP = ∪𝑐∈{1,2,3,…}TIMETM(2𝑛𝑐).
That is, 𝐹 ∈ EXP if there is an algorithm to compute 𝐹 that runs in
time at most exponential (i.e., at most 2𝑛𝑐 for some constant 𝑐) in the
length of the input.

In other words, these are defined as follows:

Definition 12.2 — P and EXP. Let 𝐹 ∶ {0, 1}∗ → {0, 1}. We say that
𝐹 ∈ P if there is a polynomial 𝑝 ∶ ℕ → ℝ and a Turing Machine
𝑀 such that for every 𝑥 ∈ {0, 1}∗, when given input 𝑥, the Turing
machine halts within at most 𝑝(|𝑥|) steps and outputs 𝐹(𝑥).

We say that 𝐹 ∈ EXP if there is a polynomial 𝑝 ∶ ℕ → ℝ and
a Turing Machine 𝑀 such that for every 𝑥 ∈ {0, 1}∗, when given
input 𝑥, 𝑀 halts within at most 2𝑝(|𝑥|) steps and outputs 𝐹(𝑥).

P
Please take the time to make sure you understand
these definitions. In particular, sometimes students
think of the class EXP as corresponding to functions
that are not in P. However, this is not the case. If 𝐹 is
in EXP then it can be computed in exponential time.

modeling running time 405

This does not mean that it cannot be computed in
polynomial time as well.

Solved Exercise 12.2 — Differerent definitions of P. Prove that P as defined in
Definition 12.2 is equal to ∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐)

�

Solution:

To show these two sets are equal we need to show that P ⊆
∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐) and ∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐) ⊆ P. We start
with the former inclusion. Suppose that 𝐹 ∈ P. Then there is some
polynomial 𝑝 ∶ ℕ → ℝ and a Turing machine 𝑀 such that 𝑀
computes 𝐹 and 𝑀 halts on every input 𝑥 within at most 𝑝(|𝑥|)
steps. We can write the polynomial 𝑝 ∶ ℕ → ℝ in the form
𝑝(𝑛) = ∑𝑑

𝑖=0 𝑎𝑖𝑛𝑖 where 𝑎0, … , 𝑎𝑑 ∈ ℝ, and we assume that 𝑎𝑑
is nonzero (or otherwise we just let 𝑑 correspond to the largest
number such that 𝑎𝑑 is nonzero). The degree if 𝑝 the number 𝑑.
Since 𝑛𝑑 = 𝑜(𝑛𝑑+1), no matter what is the coefficient 𝑎𝑑, for large
enough 𝑛, 𝑝(𝑛) < 𝑛𝑑+1 which means that the Turing machine 𝑀
will halt on inputs of length 𝑛 within fewer than 𝑛𝑑+1 steps, and
hence 𝐹 ∈ TIMETM(𝑛𝑑+1) ⊆ ∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐).

For the second inclusion, suppose that 𝐹 ∈ ∪𝑐∈{1,2,3,…}TIMETM(𝑛𝑐).
Then there is some positive 𝑐 ∈ ℕ such that 𝐹 ∈ TIMETM(𝑛𝑐) which
means that there is a Turing Machine 𝑀 and some number 𝑁0 such
that 𝑀 computes 𝐹 and for every 𝑛 > 𝑁0, 𝑀 halts on length 𝑛
inputs within at most 𝑛𝑐 steps. Let 𝑇0 be the maximum number
of steps that 𝑀 takes on inputs of length at most 𝑁0. Then if we
define the polynomial 𝑝(𝑛) = 𝑛𝑐 + 𝑇0 then we see that 𝑀 halts on
every input 𝑥 within at most 𝑝(|𝑥|) steps and hence the existence of
𝑀 demonstrates that 𝐹 ∈ P.

�

Since exponential time is much larger than polynomial time, P ⊆
EXP. All of the problems we listed in Chapter 11 are in EXP, but as
we’ve seen, for some of them there are much better algorithms that
demonstrate that they are in fact in the smaller class P.

P EXP (but not known to be in P)

Shortest path Longest Path
Min cut Max cut
2SAT 3SAT
Linear eqs Quad. eqs
Zerosum Nash
Determinant Permanent

406 introduction to theoretical computer science

Figure 12.3: Some examples of problems that are
known to be in P and problems that are known to
be in EXP but not known whether or not they are
in P. Since both P and EXP are classes of Boolean
functions, in this figure we always refer to the Boolean
(i.e., Yes/No) variant of the problems.

P EXP (but not known to be in P)

Primality Factoring

Table : A table of the examples from Chapter 11. All these prob-
lems are in EXP but the only the ones on the left column are currently
known to be in P as well (i.e., they have a polynomial-time algorithm).
See also Fig. 12.3.

R
Remark 12.3 — Boolean versions of problems. Many
of the problems defined in Chapter 11 correspond to
non Boolean functions (functions with more than one
bit of output) while P and EXP are sets of Boolean
functions. However, for every non-Boolean function
𝐹 we can always define a computationally-equivalent
Boolean function 𝐺 by letting 𝐺(𝑥, 𝑖) be the 𝑖-th bit
of 𝐹(𝑥) (see Exercise 12.3). Hence the table above,
as well as Fig. 12.3, refer to the computationally-
equivalent Boolean variants of these problems.

12.2 MODELING RUNNING TIME USING RAM MACHINES / NAND-
RAM

Turing Machines are a clean theoretical model of computation, but
do not closely correspond to real-world computing architectures. The
discrepancy between Turing Machines and actual computers does
not matter much when we consider the question of which functions
are computable, but can make a difference in the context of efficiency.
Even a basic staple of undergraduate algorithms such as “merge sort”
cannot be implemented on a Turing Machine in 𝑂(𝑛 log𝑛) time (see
Section 12.8). RAM machines (or equivalently, NAND-RAM programs)
match more closely actual computing architecture and what we mean
when we say 𝑂(𝑛) or 𝑂(𝑛 log𝑛) algorithms in algorithms courses
or whiteboard coding interviews. We can define running time with
respect to NAND-RAM programs just as we did for Turing Machines.

Definition 12.4 — Running time (RAM). Let 𝑇 ∶ ℕ → ℕ be some func-
tion mapping natural numbers to natural numbers. We say that
a function 𝐹 ∶ {0, 1}∗ → {0, 1}∗ is computable in 𝑇 (𝑛) RAM time
(RAM-time for short) if there exists a NAND-RAM program 𝑃 such
that for every sufficiently large 𝑛 and every 𝑥 ∈ {0, 1}𝑛, when given
input 𝑥, the program 𝑃 halts after executing at most 𝑇 (𝑛) lines and
outputs 𝐹(𝑥).

modeling running time 407

Figure 12.4: The proof of Theorem 12.5 shows that
we can simulate 𝑇 steps of a Turing Machine with 𝑇
steps of a NAND-RAM program, and can simulate
𝑇 steps of a NAND-RAM program with 𝑜(𝑇 4)
steps of a Turing Machine. Hence TIMETM(𝑇 (𝑛)) ⊆
TIMERAM(10 ⋅ 𝑇 (𝑛)) ⊆ TIMETM(𝑇 (𝑛)4).

We define TIMERAM(𝑇 (𝑛)) to be the set of Boolean functions
(functions mapping {0, 1}∗ to {0, 1}) that are computable in 𝑇 (𝑛)
RAM time.

Because NAND-RAM programs correspond more closely to our
natural notions of running time, we will use NAND-RAM as our
“default” model of running time, and hence use TIME(𝑇 (𝑛)) (without
any subscript) to denote TIMERAM(𝑇 (𝑛)). However, it turns out that
as long as we only care about the difference between exponential and
polynomial time, this does not make much difference. The reason is
that Turing Machines can simulate NAND-RAM programs with at
most a polynomial overhead (see also Fig. 12.4):

Theorem 12.5 — Relating RAM and Turing machines. Let 𝑇 ∶ ℕ → ℕ be a
function such that 𝑇 (𝑛) ≥ 𝑛 for every 𝑛 and the map 𝑛 ↦ 𝑇 (𝑛) can
be computed by a Turing machine in time 𝑂(𝑇 (𝑛)). Then

TIMETM(𝑇 (𝑛)) ⊆ TIMERAM(10 ⋅ 𝑇 (𝑛)) ⊆ TIMETM(𝑇 (𝑛)4) . (12.1)

P
The technical details of Theorem 12.5, such as the
condition that 𝑛 ↦ 𝑇 (𝑛) is computable in 𝑂(𝑇 (𝑛))
time or the constants 10 and 4 in (12.1) (which are
not tight and can be improved) are not very impor-
tant. In particular, all non pathological time bound
functions we encounter in practice such as 𝑇 (𝑛) = 𝑛,
𝑇 (𝑛)𝑛 log𝑛, 𝑇 (𝑛) = 2𝑛 etc. will satisfy the conditions
of Theorem 12.5, see also Remark 12.6.
The main message of the theorem is Turing Machines
and RAM machines are “roughly equivalent” in the
sense that one can simulate the other with polyno-
mial overhead. Similarly, while the proof involves
some technical details, it’s not very deep or hard, and
merely follows the simulation of RAM machines with
Turing Machines we saw in Theorem 7.1 with more
careful “book keeping”.

For example, by instantiating Theorem 12.5 with 𝑇 (𝑛) = 𝑛𝑎 and
using the fact that 10𝑛𝑎 = 𝑜(𝑏𝑎+1), we see that TIMETM(𝑛𝑎) ⊆
TIMERAM(𝑛𝑎+1) ⊆ TIMETM(𝑛4𝑎+4) which means that (by Solved Ex-
ercise 12.2)

P = ∪𝑎=1,2,…TIMETM(𝑛𝑎) = ∪𝑎=1,2,…TIMERAM(𝑛𝑎) . (12.2)

That is, we could have equally well defined P as the class of functions
computable by NAND-RAM programs (instead of Turing Machines)
that run in time polynomial in the length of the input. Similarly, by
instantiating Theorem 12.5 with 𝑇 (𝑛) = 2𝑛𝑎 we see that the class EXP

408 introduction to theoretical computer science

can also be defined as the set of functions computable by NAND-RAM
programs in time at most 2𝑝(𝑛) where 𝑝 is some polynomial. Similar
equivalence results are known for many models including cellular
automata, C/Python/Javascript programs, parallel computers, and a
great many other models, which justifies the choice of P as capturing
a technology-independent notion of tractability. (See Section 12.3
for more discussion of this issue.) This equivalence between Turing
machines and NAND-RAM (as well as other models) allows us to
pick our favorite model depending on the task at hand (i.e., “have our
cake and eat it too”) even when we study questions of efficiency, as
long as we only care about the gap between polynomial and exponential
time. When we want to design an algorithm, we can use the extra
power and convenience afforded by NAND-RAM. When we want
to analyze a program or prove a negative result, we can restrict our
attention to Turing machines.

 Big Idea 16 All “reasonable” computational models are equiv-
alent if we only care about the distinction between polynomial and
exponential.

Proof Idea:

The direction TIMETM(𝑇 (𝑛)) ⊆ TIMERAM(10 ⋅ 𝑇 (𝑛)) is not hard to
show, since a NAND-RAM program 𝑃 can simulate a Turing Machine
𝑀 with constant overhead by storing the transition table of 𝑀 in
an array (as is done in the proof of Theorem 8.1). Simulating every
step of the Turing machine can be done in a constant number 𝑐 of
steps of RAM, and it can be shown this constant 𝑐 is smaller than
10. Thus the heart of the theorem is to prove that TIMERAM(𝑇 (𝑛)) ⊆
TIMETM(𝑇 (𝑛)4). This proof closely follows the proof of Theorem 7.1,
where we have shown that every function 𝐹 that is computable by
a NAND-RAM program 𝑃 is computable by a Turing Machine (or
equivalently a NAND-TM program) 𝑀 . To prove Theorem 12.5, we
follow the exact same proof but just check that the overhead of the
simulation of 𝑃 by 𝑀 is polynomial. The proof has many details, but
is not deep. It is therefore much more important that you understand
the statement of this theorem than its proof.

⋆

Proof of Theorem 12.5. We only focus on the non-trivial direction
TIMERAM(𝑇 (𝑛)) ⊆ TIMETM(𝑇 (𝑛)4). Let 𝐹 ∈ TIMERAM(𝑇 (𝑛)). 𝐹 can
be computed in time 𝑇 (𝑛) by some NAND-RAM program 𝑃 and we
need to show that it can also be computed in time 𝑇 (𝑛)4 by a Turing
Machine 𝑀 . This will follow from showing that 𝐹 can be computed

modeling running time 409

in time 𝑇 (𝑛)4 by a NAND-TM program, since for every NAND-TM
program 𝑄 there is a Turing Machine 𝑀 simulating it such that each
iteration of 𝑄 corresponds to a single step of 𝑀 .

As mentioned above, we follow the proof of Theorem 7.1 (simula-
tion of NAND-RAM programs using NAND-TM programs) and use
the exact same simulation, but with a more careful accounting of the
number of steps that the simulation costs. Recall, that the simulation
of NAND-RAM works by “peeling off” features of NAND-RAM one
by one, until we are left with NAND-TM.

We will not provide the full details but will present the main ideas
used in showing that every feature of NAND-RAM can be simulated
by NAND-TM with at most a polynomial overhead:

1. Recall that every NAND-RAM variable or array element can con-
tain an integer between 0 and 𝑇 where 𝑇 is the number of lines that
have been executed so far. Therefore if 𝑃 is a NAND-RAM pro-
gram that computes 𝐹 in 𝑇 (𝑛) time, then on inputs of length 𝑛, all
integers used by 𝑃 are of magnitude at most 𝑇 (𝑛). This means that
the largest value i can ever reach is at most 𝑇 (𝑛) and so each one of
𝑃 ’s variables can be thought of as an array of at most 𝑇 (𝑛) indices,
each of which holds a natural number of magnitude at most 𝑇 (𝑛).
We let ℓ = ⌈log𝑇 (𝑛)⌉ be the number of bits needed to encode such
numbers. (We can start off the simulation by computing 𝑇 (𝑛) and
ℓ.)

2. We can encode a NAND-RAM array of length ≤ 𝑇 (𝑛) containing
numbers in {0, … , 𝑇 (𝑛) − 1} as an Boolean (i.e., NAND-TM) array
of 𝑇 (𝑛)ℓ = 𝑂(𝑇 (𝑛) log𝑇 (𝑛)) bits, which we can also think of as
a two dimensional array as we did in the proof of Theorem 7.1. We
encode a NAND-RAM scalar containing a number in {0, … , 𝑇 (𝑛) −
1} simply by a shorter NAND-TM array of ℓ bits.

3. We can simulate the two dimensional arrays using one-
dimensional arrays of length 𝑇 (𝑛)ℓ = 𝑂(𝑇 (𝑛) log𝑇 (𝑛). All the
arithmetic operations on integers use the grade-school algorithms,
that take time that is polynomial in the number ℓ of bits of the
integers, which is 𝑝𝑜𝑙𝑦(log𝑇 (𝑛)) in our case. Hence we can simulate
𝑇 (𝑛) steps of NAND-RAM with 𝑂(𝑇 (𝑛)𝑝𝑜𝑙𝑦(log𝑇 (𝑛)) steps of a
model that uses random access memory but only Boolean-valued
one-dimensional arrays.

4. The most expensive step is to translate from random access mem-
ory to the sequential memory model of NAND-TM/Turing Ma-
chines. As we did in the proof of Theorem 7.1 (see Section 7.2), we
can simulate accessing an array Foo at some location encoded in an
array Bar by:

410 introduction to theoretical computer science

a. Copying Bar to some temporary array Temp

b. Having an array Index which is initially all zeros except 1 at the
first location.

c. Repeating the following until Temp encodes the number 0:
(Number of repetitions is at most 𝑇 (𝑛).)
• Decrease the number encoded temp by 1. (Take number of steps

polynomial in ℓ = ⌈log𝑇 (𝑛)⌉.)
• Decrease i until it is equal to 0. (Take 𝑂(𝑇 (𝑛) steps.)
• Scan Index until we reach the point in which it equals 1 and

then change this 1 to 0 and go one step further and write 1 in
this location. (Takes 𝑂(𝑇 (𝑛)) steps.)

d. When we are done we know that if we scan Index until we reach
the point in which Index[i]= 1 then i contains the value that
was encoded by Bar (Takes 𝑂(𝑇 (𝑛) steps.)

The total cost for each such operation is 𝑂(𝑇 (𝑛)2+𝑇 (𝑛)𝑝𝑜𝑙𝑦(log𝑇 (𝑛))) =
𝑂(𝑇 (𝑛)2) steps.

In sum, we simulate a single step of NAND-RAM using
𝑂(𝑇 (𝑛)2𝑝𝑜𝑙𝑦(log𝑇 (𝑛))) steps of NAND-TM, and hence the total
simulation time is 𝑂(𝑇 (𝑛)3𝑝𝑜𝑙𝑦(log𝑇 (𝑛))) which is smaller than 𝑇 (𝑛)4

for sufficiently large 𝑛.
�

R
Remark 12.6 — Nice time bounds. When considering
general time bounds such we need to make sure to
rule out some “pathological” cases such as functions 𝑇
that don’t give enough time for the algorithm to read
the input, or functions where the time bound itself is
uncomputable. We say that a function 𝑇 ∶ ℕ → ℕ is
a nice time bound function (or nice function for short)
if for every 𝑛 ∈ ℕ, 𝑇 (𝑛) ≥ 𝑛 (i.e., 𝑇 allows enough
time to read the input), for every 𝑛′ ≥ 𝑛, 𝑇 (𝑛′) ≥ 𝑇 (𝑛)
(i.e., 𝑇 allows more time on longer inputs), and the
map 𝐹(𝑥) = 1𝑇 (|𝑥|) (i.e., mapping a string of length
𝑛 to a sequence of 𝑇 (𝑛) ones) can be computed by a
NAND-RAM program in 𝑂(𝑇 (𝑛)) time.
All the “normal” time complexity bounds we en-
counter in applications such as 𝑇 (𝑛) = 100𝑛,
𝑇 (𝑛) = 𝑛2 log𝑛,𝑇 (𝑛) = 2

√𝑛, etc. are “nice”.
Hence from now on we will only care about the
class TIME(𝑇 (𝑛)) when 𝑇 is a “nice” function. The
computability condition is in particular typically easily
satisfied. For example, for arithmetic functions such
as 𝑇 (𝑛) = 𝑛3, we can typically compute the binary
representation of 𝑇 (𝑛) in time polynomial in the num-
ber of bits of 𝑇 (𝑛) and hence poly-logarithmic in 𝑇 (𝑛).
Hence the time to write the string 1𝑇 (𝑛) in such cases
will be 𝑇 (𝑛) + 𝑝𝑜𝑙𝑦(log𝑇 (𝑛)) = 𝑂(𝑇 (𝑛)).

modeling running time 411

12.3 EXTENDED CHURCH-TURING THESIS (DISCUSSION)

Theorem 12.5 shows that the computational models of Turing Machines
and RAMMachines / NAND-RAM programs are equivalent up to poly-
nomial factors in the running time. Other examples of polynomially
equivalent models include:

• All standard programming languages, including C/Python/-
JavaScript/Lisp/etc.

• The 𝜆 calculus (see also Section 12.8).

• Cellular automata

• Parallel computers

• Biological computing devices such as DNA-based computers.

The Extended Church Turing Thesis is the statement this is true for
all physically realizable computing models. In other words, the ex-
tended Church Turing thesis says that for every scalable computing
device 𝐶 (which has a finite description but can be in principle used
to run computation on arbitrarily large inputs), there is some con-
stant 𝑎 such that for every function 𝐹 ∶ {0, 1}∗ → {0, 1} that 𝐶 can
compute on 𝑛 length inputs using an 𝑆(𝑛) amount of physical re-
sources, 𝐹 is in TIME(𝑆(𝑛)𝑎). This is a strengthening of the (“plain”)
Church-Turing Thesis, discussed in Section 7.8, which states that the
set of computable functions is the same for all physically realizable
models, but without requiring the overhead in the simulation between
different models to be at most polynomial.

All the current constructions of scalable computational models and
programming language conform to the Extended Church-Turing The-
sis, in the sense that they can be with polynomial overhead by Turing
Machines (and hence also by NAND-TM or NAND-RAM programs).
consequently, the classes P and EXP are robust to the choice of model,
and we can use the programming language of our choice, or high level
descriptions of an algorithm, to determine whether or not a problem is
in P.

Like the Church-Turing thesis itself, the extended Church-Turing
thesis is in the asymptotic setting and does not directly yield an ex-
perimentally testable prediction. However, it can be instantiated with
more concrete bounds on the overhead, yielding experimentally-
testable predictions such as the Physical Extended Church-Turing Thesis
we mentioned in Section 5.6.

In the last hundred+ years of studying and mechanizing com-
putation, no one has yet constructed a scalable computing device

412 introduction to theoretical computer science

that violates the extended Church Turing Thesis. However, quan-
tum computing, if realized, will pose a serious challenge to the ex-
tended Church-Turing Thesis (see Chapter 22). However, even if
the promises of quantum computing are fully realized, the extended
Church-Turing thesis is “morally” correct, in the sense that, while we
do need to adapt the thesis to account for the possibility of quantum
computing, its broad outline remains unchanged. We are still able
to model computation mathematically, we can still treat programs
as strings and have a universal program, we still have time hierarchy
and uncomputability results, and there is still no reason to doubt the
(“plain”) Church-Turing thesis. Moreover, the prospect of quantum
computing does not seem to make a difference for the time complexity
of many (though not all!) of the concrete problems that we care about.
In particular, as far as we know, out of all the example problems men-
tioned in Chapter 11 the complexity of only one— integer factoring—
is affected by modifying our model to include quantum computers as
well.

12.4 EFFICIENT UNIVERSAL MACHINE: A NAND-RAM INTER-
PRETER IN NAND-RAM

We have seen in Theorem 8.1 the “universal Turing Machine”. Exam-
ining that proof, and combining it with Theorem 12.5 , we can see that
the program 𝑈 has a polynomial overhead, in the sense that it can sim-
ulate 𝑇 steps of a given NAND-TM (or NAND-RAM) program 𝑃 on
an input 𝑥 in 𝑂(𝑇 4) steps. But in fact, by directly simulating NAND-
RAM programs we can do better with only a constant multiplicative
overhead. That is, there is a universal NAND-RAM program 𝑈 such that
for every NAND-RAM program 𝑃 , 𝑈 simulates 𝑇 steps of 𝑃 using
only 𝑂(𝑇) steps. (The implicit constant in the 𝑂 notation can depend
on the program 𝑃 but does not depend on the length of the input.)

Theorem 12.7 — Efficient universality of NAND-RAM. There exists a NAND-
RAM program 𝑈 satisfying the following:

1. (𝑈 is a universal NAND-RAM program.) For every NAND-RAM
program 𝑃 and input 𝑥, 𝑈(𝑃 , 𝑥) = 𝑃(𝑥) where by 𝑈(𝑃 , 𝑥) we
denote the output of 𝑈 on a string encoding the pair (𝑃 , 𝑥).

2. (𝑈 is efficient.) There are some constants 𝑎, 𝑏 such that for ev-
ery NAND-RAM program 𝑃 , if 𝑃 halts on input 𝑥 after most
𝑇 steps, then 𝑈(𝑃 , 𝑥) halts after at most 𝐶 ⋅ 𝑇 steps where
𝐶 ≤ 𝑎|𝑃 |𝑏.

modeling running time 413

Figure 12.5: The universal NAND-RAM program
𝑈 simulates an input NAND-RAM program 𝑃
by storing all of 𝑃 ’s variables inside a single array
Vars of 𝑈 . If 𝑃 has 𝑡 variables, then the array Vars
is divided into blocks of length 𝑡, where the 𝑗-th
coordinate of the 𝑖-th block contains the 𝑖-th element
of the 𝑗-th array of 𝑃 . If the 𝑗-th variable of 𝑃 is
scalar, then we just store its value in the zeroth block
of Vars.

P
As in the case of Theorem 12.5, the proof of Theo-
rem 12.7 is not very deep and so it is more important
to understand its statement. Specifically, if you under-
stand how you would go about writing an interpreter
for NAND-RAM using a modern programming lan-
guage such as Python, then you know everything you
need to know about the proof of this theorem.

Proof of Theorem 12.7. To present a universal NAND-RAM program
in full we would need to describe a precise representation scheme,
as well as the full NAND-RAM instructions for the program. While
this can be done, it is more important to focus on the main ideas, and
so we just sketch the proof here. A specification of NAND-RAM is
given in the appendix, and for the purposes of this simulation, we can
simply use the representation of the code NAND-RAM as an ASCII
string.

The program 𝑈 gets as input a NAND-RAM program 𝑃 and an
input 𝑥 and simulates 𝑃 one step at a time. To do so, 𝑈 does the fol-
lowing:

1. 𝑈 maintains variables program_counter, and number_steps for the
current line to be executed and the number of steps executed so far.

2. 𝑈 initially scans the code of 𝑃 to find the number 𝑡 of unique vari-
able names that 𝑃 uses. It will translate each variable name into a
number between 0 and 𝑡 − 1 and use an array Program to store 𝑃 ’s
code where for every line ℓ, Program[ℓ] will store the ℓ-th line of 𝑃
where the variable names have been translated to numbers. (More
concretely, we will use a constant number of arrays to separately
encode the operation used in this line, and the variable names and
indices of the operands.)

3. 𝑈 maintains a single array Vars that contains all the values of 𝑃 ’s
variables. We divide Vars into blocks of length 𝑡. If 𝑠 is a num-
ber corresponding to an array variable Foo of 𝑃 , then we store
Foo[0] in Vars[𝑠], we store Foo[1] in Var_values[𝑡 + 𝑠], Foo[2]
in Vars[2𝑡 + 𝑠] and so on and so forth (see Fig. 12.5). Generally,if
the 𝑠-th variable of 𝑃 is a scalar variable, then its value will be
stored in location Vars[𝑠]. If it is an array variable then the value of
its 𝑖-th element will be stored in location Vars[𝑡 ⋅ 𝑖 + 𝑠].

4. To simulate a single step of 𝑃 , the program 𝑈 recovers from Pro-

gram the line corresponding to program_counter and executes it.
Since NAND-RAM has a constant number of arithmetic operations,
we can implement the logic of which operation to execute using a

http://tiny.cc/introtcsappendix

414 introduction to theoretical computer science

Figure 12.6: The timed universal Turing Machine takes
as input a Turing machine 𝑀 , an input 𝑥, and a time
bound 𝑇 , and outputs 𝑀(𝑥) if 𝑀 halts within at
most 𝑇 steps. Theorem 12.8states that there is such a
machine that runs in time polynomial in 𝑇 .

sequence of a constant number of if-then-else’s. Retrieving from
Vars the values of the operands of each instruction can be done
using a constant number of arithmetic operations.

The setup stages take only a constant (depending on |𝑃 | but not
on the input 𝑥) number of steps. Once we are done with the setup, to
simulate a single step of 𝑃 , we just need to retrieve the corresponding
line and do a constant number of “if elses” and accesses to Vars to
simulate it. Hence the total running time to simulate 𝑇 steps of the
program 𝑃 is at most 𝑂(𝑇) when suppressing constants that depend
on the program 𝑃 .

�

12.4.1 Timed Universal Turing Machine
One corollary of the efficient universal machine is the following.
Given any Turing Machine 𝑀 , input 𝑥, and “step budget” 𝑇 , we can
simulate the execution of 𝑀 for 𝑇 steps in time that is polynomial in
𝑇 . Formally, we define a function TIMEDEVAL that takes the three
parameters 𝑀 , 𝑥, and the time budget, and outputs 𝑀(𝑥) if 𝑀 halts
within at most 𝑇 steps, and outputs 0 otherwise. The timed univer-
sal Turing Machine computes TIMEDEVAL in polynomial time (see
Fig. 12.6). (Since we measure time as a function of the input length,
we define TIMEDEVAL as taking the input 𝑇 represented in unary: a
string of 𝑇 ones.)

Theorem 12.8 — Timed Universal Turing Machine. Let TIMEDEVAL ∶
{0, 1}∗ → {0, 1}∗ be the function defined as

TIMEDEVAL(𝑀, 𝑥, 1𝑇) =
⎧{
⎨{⎩

𝑀(𝑥) 𝑀 halts within ≤ 𝑇 steps on 𝑥
0 otherwise

.

(12.3)
Then TIMEDEVAL ∈ P.

Proof. We only sketch the proof since the result follows fairly directly
from Theorem 12.5 and Theorem 12.7. By Theorem 12.5 to show that
TIMEDEVAL ∈ P, it suffices to give a polynomial-time NAND-RAM
program to compute TIMEDEVAL.

Such a program can be obtained as follows. Given a Turing Ma-
chine 𝑀 , by Theorem 12.5 we can transform it in time polynomial in
its description into a functionally-equivalent NAND-RAM program
𝑃 such that the execution of 𝑀 on 𝑇 steps can be simulated by the
execution of 𝑃 on 𝑐 ⋅ 𝑇 steps. We can then run the universal NAND-
RAM machine of Theorem 12.7 to simulate 𝑃 for 𝑐 ⋅ 𝑇 steps, using
𝑂(𝑇) time, and output 0 if the execution did not halt within this bud-
get. This shows that TIMEDEVAL can be computed by a NAND-RAM

modeling running time 415

program in time polynomial in |𝑀| and linear in 𝑇 , which means
TIMEDEVAL ∈ P.

�

12.5 THE TIME HIERARCHY THEOREM

Some functions are uncomputable, but are there functions that can
be computed, but only at an exorbitant cost? For example, is there a
function that can be computed in time 2𝑛, but can not be computed in
time 20.9𝑛? It turns out that the answer is Yes:

Theorem 12.9 — Time Hierarchy Theorem. For every nice function 𝑇 ∶
ℕ → ℕ, there is a function 𝐹 ∶ {0, 1}∗ → {0, 1} in TIME(𝑇 (𝑛) log𝑛)⧵
TIME(𝑇 (𝑛)).

There is nothing special about log𝑛, and we could have used any
other efficiently computable function that tends to infinity with 𝑛.

R
Remark 12.10 — Simpler corollary of the time hierarchy
theorem. The generality of the time hierarchy theorem
can make its proof a little hard to read. It might be
easier to follow the proof if you first try to prove by
yourself the easier statement P ⊊ EXP.
You can do so by showing that the following function
𝐹 ∶ {0, 1}∗ ∶→ {0, 1} is in EXP ⧵ P: for every Turing
Machine 𝑀 and input 𝑥, 𝐹(𝑀, 𝑥) = 1 if and only if
𝑀 halts on 𝑥 within at most |𝑥|log |𝑥| steps. One can
show that 𝐹 ∈ TIME(𝑛𝑂(log𝑛)) ⊆ EXP using the
universal Turing machine (or the efficient universal
NAND-RAM program of Theorem 12.7). On the other
harnd, we can use similar ides to those used to show
the uncomputability of HALT in Section 8.3.2 to prove
that 𝐹 ∉ P.

Proof Idea:

In the proof of Theorem 8.7 (the uncomputability of the Halting
problem), we have shown that the function HALT cannot be com-
puted in any finite time. An examination of the proof shows that it
gives something stronger. Namely, the proof shows that if we fix our
computational budget to be 𝑇 steps, then not only we can’t distinguish
between programs that halt and those that do not, but cannot even
distinguish between programs that halt within at most 𝑇 ′ steps and
those that take more than that (where 𝑇 ′ is some number depending
on 𝑇). Therefore, the proof of Theorem 12.9 follows the ideas of the
uncomputability of the halting problem, but again with a more careful
accounting of the running time.

⋆

416 introduction to theoretical computer science

Figure 12.7: The Time Hierarchy Theorem (Theo-
rem 12.9) states that all of these classes are distinct.

Proof of Theorem 12.9. Our proof is inspired by the proof of the un-
computability of the halting problem. Specifically, for every function
𝑇 as in the theorem’s statement, we define the Bounded Halting func-
tion HALT𝑇 as follows. The input to HALT𝑇 is a pair (𝑃 , 𝑥) such that
|𝑃 | ≤ log log |𝑥| encodes some NAND-RAM program. We define

HALT𝑇 (𝑃 , 𝑥) =
⎧{
⎨{⎩

1, 𝑃 halts on 𝑥 within ≤ 100 ⋅ 𝑇 (|𝑃 | + |𝑥|) steps
0, otherwise

.

(12.4)
(The constant 100 and the function log log𝑛 are rather arbitrary, and
are chosen for convenience in this proof.)

Theorem 12.9 is an immediate consequence of the following two
claims:

Claim 1: HALT𝑇 ∈ TIME(𝑇 (𝑛) ⋅ log𝑛)
and
Claim 2: HALT𝑇 ∉ TIME(𝑇 (𝑛)).
Please make sure you understand why indeed the theorem follows

directly from the combination of these two claims. We now turn to
proving them.

Proof of claim 1: We can easily check in linear time whether an
input has the form 𝑃 , 𝑥 where |𝑃 | ≤ log log |𝑥|. Since 𝑇 (⋅) is a nice
function, we can evaluate it in 𝑂(𝑇 (𝑛)) time. Thus, we can compute
HALT𝑇 (𝑃 , 𝑥) as follows:

1. Compute 𝑇0 = 𝑇 (|𝑃 | + |𝑥|) in 𝑂(𝑇0) steps.

2. Use the universal NAND-RAM program of Theorem 12.7 to simu-
late 100⋅𝑇0 steps of 𝑃 on the input 𝑥 using at most 𝑝𝑜𝑙𝑦(|𝑃 |)𝑇0 steps.

modeling running time 417

(Recall that we use 𝑝𝑜𝑙𝑦(ℓ) to denote a quantity that is bounded by
𝑎ℓ𝑏 for some constants 𝑎, 𝑏.)

3. If 𝑃 halts within these 100 ⋅ 𝑇0 steps then output 1, else output 0.

The length of the input is 𝑛 = |𝑃 | + |𝑥|. Since |𝑥| ≤ 𝑛 and
(log log |𝑥|)𝑏 = 𝑜(log |𝑥|) for every 𝑏, the running time will be
𝑜(𝑇 (|𝑃 | + |𝑥|) log𝑛) and hence the above algorithm demonstrates that
HALT𝑇 ∈ TIME(𝑇 (𝑛) ⋅ log𝑛), completing the proof of Claim 1.

Proof of claim 2: This proof is the heart of Theorem 12.9, and is
very reminiscent of the proof that HALT is not computable. Assume,
toward the sake of contradiction, that there is some NAND-RAM
program 𝑃 ∗ that computes HALT𝑇 (𝑃 , 𝑥) within 𝑇 (|𝑃 | + |𝑥|) steps.
We are going to show a contradiction by creating a program 𝑄 and
showing that under our assumptions, if 𝑄 runs for less than 𝑇 (𝑛)
steps when given (a padded version of) its own code as input then it
actually runs for more than 𝑇 (𝑛) steps and vice versa. (It is worth re-
reading the last sentence twice or thrice to make sure you understand
this logic. It is very similar to the direct proof of the uncomputability
of the halting problem where we obtained a contradiction by using an
assumed “halting solver” to construct a program that, given its own
code as input, halts if and only if it does not halt.)

We will define 𝑄∗ to be the program that on input a string 𝑧 does
the following:

1. If 𝑧 does not have the form 𝑧 = 𝑃1𝑚 where 𝑃 represents a NAND-
RAM program and |𝑃 | < 0.1 log log𝑚 then return 0. (Recall that
1𝑚 denotes the string of 𝑚 ones.)

2. Compute 𝑏 = 𝑃 ∗(𝑃 , 𝑧) (at a cost of at most 𝑇 (|𝑃 | + |𝑧|) steps, under
our assumptions).

3. If 𝑏 = 1 then 𝑄∗ goes into an infinite loop, otherwise it halts.

Let ℓ be the length description of 𝑄∗ as a string, and let 𝑚 be larger
than 221000ℓ . We will reach a contradiction by splitting into cases ac-
cording to whether or not HALT𝑇 (𝑄∗, 𝑄∗1𝑚) equals 0 or 1.

On the one hand, if HALT𝑇 (𝑄∗, 𝑄∗1𝑚) = 1, then under our as-
sumption that 𝑃 ∗ computes HALT𝑇 , 𝑄∗ will go into an infinite loop
on input 𝑧 = 𝑄∗1𝑚, and hence in particular 𝑄∗ does not halt within
100𝑇 (|𝑄∗| + 𝑚) steps on the input 𝑧. But this contradicts our assump-
tion that HALT𝑇 (𝑄∗, 𝑄∗1𝑚) = 1.

This means that it must hold that HALT𝑇 (𝑄∗, 𝑄∗1𝑚) = 0. But
in this case, since we assume 𝑃 ∗ computes HALT𝑇 , 𝑄∗ does not do
anything in phase 3 of its computation, and so the only computa-
tion costs come in phases 1 and 2 of the computation. It is not hard

418 introduction to theoretical computer science

Figure 12.8: Some complexity classes and some of the
functions we know (or conjecture) to be contained in
them.

to verify that Phase 1 can be done in linear and in fact less than 5|𝑧|
steps. Phase 2 involves executing 𝑃 ∗, which under our assumption
requires 𝑇 (|𝑄∗| + 𝑚) steps. In total we can perform both phases in
less than 10𝑇 (|𝑄∗| + 𝑚) in steps, which by definition means that
HALT𝑇 (𝑄∗, 𝑄∗1𝑚) = 1, but this is of course a contradiction. This
completes the proof of Claim 2 and hence of Theorem 12.9.

�

Solved Exercise 12.3 — P vs EXP. Prove that P ⊊ EXP.
�

Solution:

We show why this statement follows from the time hierarchy
theorem, but it can be an instructive exercise to prove it directly,
see Remark 12.10. We need to show that there exists 𝐹 ∈ EXP ⧵ P.
Let 𝑇 (𝑛) = 𝑛log𝑛 and 𝑇 ′(𝑛) = 𝑛log𝑛/2. Both are nice functions.
Since 𝑇 (𝑛)/𝑇 ′(𝑛) = 𝜔(log𝑛), by Theorem 12.9 there exists some
𝐹 in TIME(𝑇 ′(𝑛)) ⊊ TIME(𝑇 (𝑛)). Since for sufficiently large 𝑛,
2𝑛 > 𝑛log𝑛, 𝐹 ∈ TIME(2𝑛) ⊆ EXP. On the other hand, 𝐹 ∉ P.
Indeed, suppose otherwise that there was a constant 𝑐 > 0 and
a Turing Machine computing 𝐹 on 𝑛-length input in at most 𝑛𝑐

steps for all sufficiently large 𝑛. Then since for 𝑛 large enough
𝑛𝑐 < 𝑛log𝑛/2, it would have followed that 𝐹 ∈ TIME(𝑛log𝑛/2)
contradicting our choice of 𝐹 .

�

The time hierarchy theorem tells us that there are functions we can
compute in 𝑂(𝑛2) time but not 𝑂(𝑛), in 2𝑛 time, but not 2

√𝑛, etc.. In
particular there are most definitely functions that we can compute in
time 2𝑛 but not 𝑂(𝑛). We have seen that we have no shortage of natu-
ral functions for which the best known algorithm requires roughly 2𝑛

time, and that many people have invested significant effort in trying
to improve that. However, unlike in the finite vs. infinite case, for all
of the examples above at the moment we do not know how to rule
out even an 𝑂(𝑛) time algorithm. We will however see that there is a
single unproven conjecture that would imply such a result for most of
these problems.

The time hierarchy theorem relies on the existence of an efficient
universal NAND-RAM program, as proven in Theorem 12.7. For
other models such as Turing Machines we have similar time hierarchy
results showing that there are functions computable in time 𝑇 (𝑛) and
not in time 𝑇 (𝑛)/𝑓(𝑛) where 𝑓(𝑛) corresponds to the overhead in the
corresponding universal machine.

modeling running time 419

Figure 12.9: We can think of an infinite function
𝐹 ∶ {0, 1}∗ → {0, 1} as a collection of finite functions
𝐹0, 𝐹1, 𝐹2, … where 𝐹↾𝑛 ∶ {0, 1}𝑛 → {0, 1} is the
restriction of 𝐹 to inputs of length 𝑛. We say 𝐹 is in
P/poly if for every 𝑛, the function 𝐹↾𝑛 is computable
by a polynomial size NAND-CIRC program, or
equivalently, a polynomial sized Boolean circuit.

12.6 NON UNIFORM COMPUTATION

We have now seen two measures of “computation cost” for functions.
In Section 4.6 we defined the complexity of computing finite functions
using circuits / straightline programs. Specifically, for a finite function
𝑔 ∶ {0, 1}𝑛 → {0, 1} and number 𝑇 ∈ ℕ, 𝑔 ∈ SIZE(𝑇) if there is circuit
of at most 𝑇 NAND gates (or equivalently a 𝑇 -line NAND-CIRC
program) that computes 𝑔. To relate this to the classes TIME(𝑇 (𝑛))
defined in this chapter we first need to extend the class SIZE(𝑇 (𝑛))
from finite functions to functions with unbounded input length.

Definition 12.11 — Non uniform computation. Let 𝐹 ∶ {0, 1}∗ → {0, 1}
and 𝑇 ∶ ℕ → ℕ be a nice time bound. For every 𝑛 ∈ ℕ, define
𝐹↾𝑛 ∶ {0, 1}𝑛 → {0, 1} to be the restriction of 𝐹 to inputs of size 𝑛.
That is, 𝐹↾𝑛 is the function mapping {0, 1}𝑛 to {0, 1} such that for
every 𝑥 ∈ {0, 1}𝑛, F_{↾n}(x)=F(x)$.

We say that 𝐹 is non-uniformly computable in at most 𝑇 (𝑛) size, de-
noted by 𝐹 ∈ SIZE(𝑇 (𝑛)) if there exists a sequence (𝐶0, 𝐶1, 𝐶2, …)
of NAND circuits such that:

• For every 𝑛 ∈ ℕ, 𝐶𝑛 computes the function 𝐹↾𝑛

• For every sufficiently large 𝑛, 𝐶𝑛 has at most 𝑇 (𝑛) gates.

The non uniform analog to the class P is the class P/poly defined as

P/poly = ∪𝑐∈ℕSIZE(𝑛𝑐) . (12.5)

There is a big difference between non uniform computation and uni-
form complexity classes such as TIME(𝑇 (𝑛)) or P. The condition
𝐹 ∈ P means that there is a single Turing machine 𝑀 that computes
𝐹 on all inputs in polynomial time. The condition 𝐹 ∈ P/poly only
means that for every input length 𝑛 there can be a different circuit 𝐶𝑛
that computes 𝐹 using polynomially many gates on inputs of these
lengths. As we will see, 𝐹 ∈ P/poly does not necessarily imply that
𝐹 ∈ P. However, the other direction is true:

Theorem 12.12 — Nonuniform computation contains uniform computa-

tion. There is some 𝑎 ∈ ℕ s.t. for every nice 𝑇 ∶ ℕ → ℕ and
𝐹 ∶ {0, 1}∗ → {0, 1},

TIME(𝑇 (𝑛)) ⊆ SIZE(𝑇 (𝑛)𝑎) . (12.6)

In particular, Theorem 12.12 shows that for every 𝑐, TIME(𝑛𝑐) ⊆
SIZE(𝑛𝑐𝑎) and hence P ⊆ P/poly.

Proof Idea:

420 introduction to theoretical computer science

The idea behind the proof is to “unroll the loop”. Specifically, we
will use the programming language variants of non-uniform and uni-
form computation: namely NAND-CIRC and NAND-TM. The main
difference between the two is that NAND-TM has loops. However, for
every fixed 𝑛, if we know that a NAND-TM program runs in at most
𝑇 (𝑛) steps, then we can replace its loop by simply “copying and past-
ing” its code 𝑇 (𝑛) times, similar to how in Python we can replace code
such as

for i in range(4):

print(i)

with the “loop free” code

print(0)

print(1)

print(2)

print(3)

To make this idea into an actual proof we need to tackle one tech-
nical difficulty, and this is to ensure that the NAND-TM program is
oblivious in the sense that the value of the index variable i in the 𝑗-th
iteration of the loop will depend only on 𝑗 and not on the contents of
the input. We make a digression to do just that in Section 12.6.1 and
then complete the proof of Theorem 12.12.

⋆

12.6.1 Oblivious NAND-TM programs
Our approach for proving Theorem 12.12 involves “unrolling the
loop”. For example, consider the following NAND-TM to compute the
XOR function on inputs of arbitrary length:

temp_0 = NAND(X[0],X[0])

Y_nonblank[0] = NAND(X[0],temp_0)

temp_2 = NAND(X[i],Y[0])

temp_3 = NAND(X[i],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

MODANDJUMP(X_nonblank[i],X_nonblank[i])

Setting (as an example) 𝑛 = 3, we can attempt to translate this
NAND-TM program into a NAND-CIRC program for computing
XOR3 ∶ {0, 1}3 → {0, 1} by simply “copying and pasting” the loop
three times (dropping the MODANDJMP line):

temp_0 = NAND(X[0],X[0])

Y_nonblank[0] = NAND(X[0],temp_0)

modeling running time 421

Figure 12.10: A NAND circuit for XOR3 obtained by
“unrolling the loop” of the NAND-TM program for
computing XOR three times.

temp_2 = NAND(X[i],Y[0])

temp_3 = NAND(X[i],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

temp_0 = NAND(X[0],X[0])

Y_nonblank[0] = NAND(X[0],temp_0)

temp_2 = NAND(X[i],Y[0])

temp_3 = NAND(X[i],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

temp_0 = NAND(X[0],X[0])

Y_nonblank[0] = NAND(X[0],temp_0)

temp_2 = NAND(X[i],Y[0])

temp_3 = NAND(X[i],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

However, the above is still not a valid NAND-CIRC program since
it contains references to the special variable i. To make it into a valid
NAND-CIRC program, we replace references to i in the first iteration
with 0, references in the second iteration with 1, and references in the
third iteration with 2. (We also create a variable zero and use it for the
first time any variable is instantiated, as well as remove assignments to
non-output variables that are never used later on.) The resulting pro-
gram is a standard “loop free and index free” NAND-CIRC program
that computes XOR3 (see also Fig. 12.10):

temp_0 = NAND(X[0],X[0])

one = NAND(X[0],temp_0)

zero = NAND(one,one)

temp_2 = NAND(X[0],zero)

temp_3 = NAND(X[0],temp_2)

temp_4 = NAND(zero,temp_2)

Y[0] = NAND(temp_3,temp_4)

temp_2 = NAND(X[1],Y[0])

temp_3 = NAND(X[1],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

temp_2 = NAND(X[2],Y[0])

temp_3 = NAND(X[2],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

Key to this transformation was the fact that in our original NAND-
TM program for XOR, regardless of whether the input is 011, 100, or

422 introduction to theoretical computer science

Figure 12.11: We simulate a 𝑇 (𝑛)-time NAND-TM
program 𝑃 ′ with an oblivious NAND-TM program 𝑃
by adding special arrays Atstart and Atend to mark
positions 0 and 𝑇 − 1 respectively. The program 𝑃
will simply “sweep” its arrays from right to left and
back again. If the original program 𝑃 ′ would have
moved i in a different direction then we wait 𝑂(𝑇)
steps until we reach the same point back again, and so
𝑃 runs in 𝑂(𝑇 (𝑛)2) time.

any other string, the index variable i is guaranteed to equal 0 in the
first iteration, 1 in the second iteration, 2 in the third iteration, and so
on and so forth. The particular sequence 0, 1, 2, … is immaterial: the
crucial property is that the NAND-TM program for XOR is oblivious
in the sense that the value of the index i in the 𝑗-th iteration depends
only on 𝑗 and does not depend on the particular choice of the input.
Luckily, it is possible to transform every NAND-TM program into a
functionally equivalent oblivious program with at most quadratic .
(Similarly we can transform any Turing machine into a functionally
equivalent oblivious Turing machine, see Exercise 12.6.)

Theorem 12.13 — Making NAND-TM oblivious. Let 𝑇 ∶ ℕ → ℕ be a nice
function and let 𝐹 ∈ TIMETM(𝑇 (𝑛)). Then there is a NAND-TM
program 𝑃 that computes 𝐹 in 𝑂(𝑇 (𝑛)2) steps and satisfying the
following. For every 𝑛 ∈ ℕ there is a sequence 𝑖0, 𝑖1, … , 𝑖𝑚−1 such
that for every 𝑥 ∈ {0, 1}𝑛, if 𝑃 is executed on input 𝑥 then in the
𝑗-th iteration the variable i is equal to 𝑖𝑗.

In other words, Theorem 12.13 implies that if we can compute 𝐹 in
𝑇 (𝑛) steps, then we can compute it in 𝑂(𝑇 (𝑛)2) steps with a program
𝑃 in which the position of i in the 𝑗-th iteration depends only on 𝑗
and the length of the input, and not on the contents of the input. Such
a program can be easily translated into a NAND-CIRC program of
𝑂(𝑇 (𝑛)2) lines by “unrolling the loop”.

Proof Idea:

We can translate any NAND-TM program 𝑃 ′ into an oblivious
program 𝑃 by making 𝑃 “sweep” its arrays. That is, the index i in
𝑃 will always move all the way from position 0 to position 𝑇 (𝑛) − 1
and back again. We can then simulate the program 𝑃 ′ with at most
𝑇 (𝑛) overhead: if 𝑃 ′ wants to move i left when we are in a rightward
sweep then we simply wait the at most 2𝑇 (𝑛) steps until the next time
we are back in the same position while sweeping to the left.

⋆

Proof of Theorem 12.13. Let 𝑃 ′ be a NAND-TM program computing 𝐹
in 𝑇 (𝑛) steps. We construct an oblivious NAND-TM program 𝑃 for
computing 𝐹 as follows (see also Fig. 12.11).

1. On input 𝑥, 𝑃 will compute 𝑇 = 𝑇 (|𝑥|) and set up arrays Atstart
and Atend satisfying Atstart[0]= 1 and Atstart[𝑖]= 0 for 𝑖 > 0
and Atend[𝑇 − 1]= 1 and Atend[i]= 0 for all 𝑖 ≠ 𝑇 − 1. We can do
this because 𝑇 is a nice function. Note that since this computation
does not depend on 𝑥 but only on its length, it is oblivious.

2. 𝑃 will also have a special array Marker initialized to all zeroes.

modeling running time 423

Figure 12.12: The function UNROLL takes as input a
Turing Machine 𝑀 , an input length parameter 𝑛, a
step budget parameter 𝑇 , and outputs a circuit 𝐶 of
size 𝑝𝑜𝑙𝑦(𝑇) that takes 𝑛 bits of inputs and outputs
𝑀(𝑥) if 𝑀 halts on 𝑥 within at most 𝑇 steps.

3. The index variable of 𝑃 will change direction of movement to
the right whenever Atstart[i]= 1 and to the left whenever
Atend[i]= 1.

4. The program 𝑃 simulates the execution of 𝑃 ′. However, if the
MODANDJMP instruction in 𝑃 ′ attempts to move to the right when 𝑃
is moving left (or vice versa) then 𝑃 will set Marker[i] to 1 and
enter into a special “waiting mode”. In this mode 𝑃 will wait until
the next time in which Marker[i]= 1 (at the next sweep) at which
points 𝑃 zeroes Marker[i] and continues with the simulation. In
the worst case this will take 2𝑇 (𝑛) steps (if 𝑃 has to go all the way
from one end to the other and back again.)

5. We also modify 𝑃 to ensure it ends the computation after simu-
lating exactly 𝑇 (𝑛) steps of 𝑃 ′, adding “dummy steps” if 𝑃 ′ ends
early.

We see that 𝑃 simulates the execution of 𝑃 ′ with an overhead of
𝑂(𝑇 (𝑛)) steps of 𝑃 per one step of 𝑃 ′, hence completing the proof.

�

Theorem 12.13 implies Theorem 12.12. Indeed, if 𝑃 is a 𝑘-line obliv-
ious NAND-TM program computing 𝐹 in time 𝑇 (𝑛) then for every 𝑛
we can obtain a NAND-CIRC program of (𝑘 − 1) ⋅ 𝑇 (𝑛) lines by simply
making 𝑇 (𝑛) copies of 𝑃 (dropping the final MODANDJMP line). In the
𝑗-th copy we replace all references of the form Foo[i] to foo_𝑖𝑗 where
𝑖𝑗 is the value of i in the 𝑗-th iteration.

12.6.2 “Unrolling the loop”: algorithmic transformation of Turing Machines
to circuits

The proof of Theorem 12.12 is algorithmic, in the sense that the proof
yields a polynomial-time algorithm that given a Turing Machine 𝑀
and parameters 𝑇 and 𝑛, produces a circuit of 𝑂(𝑇 2) gates that agrees
with 𝑀 on all inputs 𝑥 ∈ {0, 1}𝑛 (as long as 𝑀 runs for less than 𝑇
steps these inputs.) We record this fact in the following theorem, since
it will be useful for us later on:

Theorem 12.14 — Turing-machine to circuit compiler. There is algorithm
UNROLL such that for every Turing Machine 𝑀 and numbers 𝑛, 𝑇 ,
UNROLL(𝑀, 1𝑇 , 1𝑛) runs for 𝑝𝑜𝑙𝑦(|𝑀|, 𝑇 , 𝑛) steps and outputs a
NAND circuit 𝐶 with 𝑛 inputs, 𝑂(𝑇 2) gates, and one output, such
that

𝐶(𝑥) =
⎧{
⎨{⎩

𝑦 𝑀 halts in ≤ 𝑇 steps and outputs 𝑦
0 otherwise

. (12.7)

424 introduction to theoretical computer science

Proof. We only sketch the proof since it follows by directly translating
the proof of non-uniform-thm{.ref into an algorithm together with
the simulation of Turing machines by NAND-TM programs (see also
Fig. 12.13). Specifically, UNROLL does the following:

1. Transform the Turing Machine 𝑀 into an equivalent NAND-TM
program 𝑃 .

2. Transform the NAND-TM program 𝑃 into an equivalent oblivious
program 𝑃 ′ following the proof of Theorem 12.13. The program 𝑃 ′

takes 𝑇 ′ = 𝑂(𝑇 2) steps to simulate 𝑇 steps of 𝑃 .

3. “Unroll the loop” of 𝑃 ′ by obtaining a NAND-CIRC program of
𝑂(𝑇 ′) lines (or equivalently a NAND circuit with 𝑂(𝑇 2) gates)
corresponding to the execution of 𝑇 ′ iterations of 𝑃 ′.

�

Figure 12.13: We can transform a Turing Machine 𝑀 ,
input length parameter 𝑛, and time bound 𝑇 into an
𝑂(𝑇 2) sized NAND circuit that agrees with 𝑀 on all
inputs 𝑥 ∈ {0, 1}𝑛 on which 𝑀 halts in at most 𝑇
steps. The transformation is obtained by first using
the equivalence of Turing Machines and NAND-
TM programs 𝑃 , then turning 𝑃 into an equivalent
oblivious NAND-TM program 𝑃 ′ via Theorem 12.13,
then “unrolling” 𝑂(𝑇 2) iterations of the loop of
𝑃 ′ to obtain an 𝑂(𝑇 2) line NAND-CIRC program
that agrees with 𝑃 ′ on length 𝑛 inputs, and finally
translating this program into an equivalent circuit.

P
Reviewing the transformations described in Fig. 12.13,
as well as solving the following two exercises is a great
way to get more comfort with non-uniform complexity
and in particular with P/poly and its relation to P.

Solved Exercise 12.4 — Alternative characterization of P. Prove that for every
𝐹 ∶ {0, 1}∗ → {0, 1}, 𝐹 ∈ P if and only if there is a polynomial-
time Turing Machine 𝑀 such that for every 𝑛 ∈ ℕ, 𝑀(1𝑛) outputs a
description of an 𝑛 input circuit 𝐶𝑛 that computes the restriction 𝐹↾𝑛
of 𝐹 to inputs in {0, 1}𝑛.

�

modeling running time 425

Solution:

We start with the “if” direction. Suppose that there is a polynomial-
time Turing Machine 𝑀 that on input 1𝑛 outputs a circuit 𝐶𝑛 that
computes 𝐹↾𝑛. Then the following is a polynomial-time Turing
Machine 𝑀 ′ to compute 𝐹 . On input 𝑥 ∈ {0, 1}∗, 𝑀 ′ will:

1. Let 𝑛 = |𝑥| and compute 𝐶𝑛 = 𝑀(1𝑛).

2. Return the evaluation of 𝐶𝑛 on 𝑥.

Since we can evaluate a Boolean circuit on an input in poly-
nomial time, 𝑀 ′ runs in polynomial time and computes 𝐹(𝑥) on
every input 𝑥.

For the “only if” direction, if 𝑀 ′ is a Turing Machine that com-
putes 𝐹 in polynomial-time, then (applying the equivalence of Tur-
ing Machines and NAND-TM as well as Theorem 12.13) there is
also an oblivious NAND-TM program 𝑃 that computes 𝐹 in time
𝑝(𝑛) for some polynomial 𝑝. We can now define 𝑀 to be the Turing
Machine that on input 1𝑛 outputs the NAND circuit obtained by
“unrolling the loop” of 𝑃 for 𝑝(𝑛) iterations. The resulting NAND
circuit computes 𝐹↾𝑛 and has 𝑂(𝑝(𝑛)) gates. It can also be trans-
formed to a Boolean circuit with 𝑂(𝑝(𝑛)) AND/OR/NOT gates.

�

Solved Exercise 12.5 — P/poly characterization by advice. Let 𝐹 ∶ {0, 1}∗ →
{0, 1}. Then 𝐹 ∈ P/poly if and only if there exists a polynomial 𝑝 ∶ ℕ →
ℕ, a polynomial-time Turing Machine 𝑀 and a sequence {𝑎𝑛}𝑛∈ℕ of
strings, such that for every 𝑛 ∈ ℕ:

• |𝑎𝑛| ≤ 𝑝(𝑛)
• For every 𝑥 ∈ {0, 1}𝑛, 𝑀(𝑎𝑛, 𝑥) = 𝐹(𝑥).

�

Solution:

We only sketch the proof. For the “only if” direction, if 𝐹 ∈
P/poly then we can use for 𝑎𝑛 simply the description of the cor-
responding circuit 𝐶𝑛 and for 𝑀 the program that computes in
polynomial time the evaluation of a circuit on its input.

For the “if” direction, we can use the same “unrolling the loop”
technique of Theorem 12.12 to show that if 𝑃 is a polynomial-time
NAND-TM program, then for every 𝑛 ∈ ℕ, the map 𝑥 ↦ 𝑃(𝑎𝑛, 𝑥)
can be computed by a polynomial size NAND-CIRC program 𝑄𝑛.

�

426 introduction to theoretical computer science

12.6.3 Can uniform algorithms simulate non uniform ones?
Theorem 12.12 shows that every function in TIME(𝑇 (𝑛)) is in
SIZE(𝑝𝑜𝑙𝑦(𝑇 (𝑛))). One can ask if there is an inverse relation. Suppose
that 𝐹 is such that 𝐹↾𝑛 has a “short” NAND-CIRC program for every
𝑛. Can we say that it must be in TIME(𝑇 (𝑛)) for some “small” 𝑇 ? The
answer is an emphatic no. Not only is P/poly not contained in P, in fact
P/poly contains functions that are uncomputable!

Theorem 12.15 — P/poly contains uncomputable functions. There exists an
uncomputable function 𝐹 ∶ {0, 1}∗ → {0, 1} such that 𝐹 ∈ P/poly.

Proof Idea:

Since P/poly corresponds to non uniform computation, a function
𝐹 is in P/poly if for every 𝑛 ∈ ℕ, the restriction 𝐹↾𝑛 to inputs of length
𝑛 has a small circuit/program, even if the circuits for different values
of 𝑛 are completely different from one another. In particular, if 𝐹 has
the property that for every equal-length inputs 𝑥 and 𝑥′, 𝐹(𝑥) =
𝐹(𝑥′) then this means that 𝐹↾𝑛 is either the constant function zero
or the constant function one for every 𝑛 ∈ ℕ. Since the constant
function has a (very!) small circuit, such a function 𝐹 will always
be in P/poly (indeed even in smaller classes). Yet by a reduction from
the Halting problem, we can obtain a function with this property that
is uncomputable.

⋆

Proof of Theorem 12.15. Consider the following “unary halting func-
tion” UH ∶ {0, 1}∗ → {0, 1} defined as follows. We let 𝑆 ∶ ℕ → {0, 1}∗

be the function that on input 𝑛 ∈ ℕ, outputs the string that corre-
sponds to the binary representation of the number 𝑛 without the most
significant 1 digit. Note that 𝑆 is onto. For every 𝑥 ∈ {0, 1}, we de-
fine UH(𝑥) = HALTONZERO(𝑆(|𝑥|)). That is, if 𝑛 is the length of 𝑥,
then UH(𝑥) = 1 if and only if the string 𝑆(𝑛) encodes a NAND-TM
program that halts on the input 0.

UH is uncomputable, since otherwise we could compute
HALTONZERO by transforming the input program 𝑃 into the integer
𝑛 such that 𝑃 = 𝑆(𝑛) and then running UH(1𝑛) (i.e., UH on the string
of 𝑛 ones). On the other hand, for every 𝑛, UH𝑛(𝑥) is either equal
to 0 for all inputs 𝑥 or equal to 1 on all inputs 𝑥, and hence can be
computed by a NAND-CIRC program of a constant number of lines.

�

The issue here is of course uniformity. For a function 𝐹 ∶ {0, 1}∗ →
{0, 1}, if 𝐹 is in TIME(𝑇 (𝑛)) then we have a single algorithm that
can compute 𝐹↾𝑛 for every 𝑛. On the other hand, 𝐹↾𝑛 might be in

modeling running time 427

SIZE(𝑇 (𝑛)) for every 𝑛 using a completely different algorithm for ev-
ery input length. For this reason we typically use P/poly not as a model
of efficient computation but rather as a way to model inefficient compu-
tation. For example, in cryptography people often define an encryp-
tion scheme to be secure if breaking it for a key of length 𝑛 requires
more than a polynomial number of NAND lines. Since P ⊆ P/poly,
this in particular precludes a polynomial time algorithm for doing so,
but there are technical reasons why working in a non uniform model
makes more sense in cryptography. It also allows to talk about se-
curity in non asymptotic terms such as a scheme having “128 bits of
security”.

While it can sometimes be a real issue, in many natural settings
the difference between uniform and non-uniform computation does
not seem to so important. In particular, in all the examples of prob-
lems not known to be in P we discussed before: longest path, 3SAT,
factoring, etc., these problems are also not known to be in P/poly ei-
ther. Thus, for “natural” functions, if you pretend that TIME(𝑇 (𝑛))
is roughly the same as SIZE(𝑇 (𝑛)), you will be right more often than
wrong.

Figure 12.14: Relations between P, EXP, and P/poly. It
is known that P ⊆ EXP, P ⊆ P/poly and that P/poly
contains uncomputable functions (which in particular
are outside of EXP). It is not known whether or not
EXP ⊆ P/poly though it is believed that EXP ⊈ P/poly.

12.6.4 Uniform vs. Nonuniform computation: A recap
To summarize, the two models of computation we have described so
far are:

• Uniform models: Turing machines, NAND-TM programs, RAM ma-
chines, NAND-RAM programs, C/JavaScript/Python, etc. These model
include loops and unbounded memory hence a single program can
compute a function with unbounded input length.

• Non-uniform models: Boolean Circuits or straightline programs have
no loops and can only compute finite functions. The time to execute
them is exactly the number of lines or gates they contain.

For a function 𝐹 ∶ {0, 1}∗ → {0, 1} and some nice time bound
𝑇 ∶ ℕ → ℕ, we know that:

428 introduction to theoretical computer science

• If 𝐹 is uniformly computable in time 𝑇 (𝑛) then there is a sequence
of circuits 𝐶1, 𝐶2, … where 𝐶𝑛 has 𝑝𝑜𝑙𝑦(𝑇 (𝑛)) gates and computes
𝐹↾𝑛 (i.e., restriction of 𝐹 to {0, 1}𝑛) for every 𝑛.

• The reverse direction is not necessarily true - there are examples of
functions 𝐹 ∶ {0, 1}𝑛 → {0, 1} such that 𝐹↾𝑛 can be computed by
even a constant size circuit but 𝐹 is uncomputable.

This means that non uniform complexity is more useful to establish
hardness of a function than its easiness.

✓ Lecture Recap

• We can define the time complexity of a function
using NAND-TM programs, and similarly to the
notion of computability, this appears to capture the
inherent complexity of the function.

• There are many natural problems that have
polynomial-time algorithms, and other natural
problems that we’d love to solve, but for which the
best known algorithms are exponential.

• The definition of polynomial time, and hence the
class P, is robust to the choice of model, whether
it is Turing machines, NAND-TM, NAND-RAM,
modern programming languages, and many other
models.

• The time hierarchy theorem shows that there are
some problems that can be solved in exponential,
but not in polynomial time. However, we do not
know if that is the case for the natural examples
that we described in this lecture.

• By “unrolling the loop” we can show that every
function computable in time 𝑇 (𝑛) can be computed
by a sequence of NAND-CIRC programs (one for
every input length) each of size at most 𝑝𝑜𝑙𝑦(𝑇 (𝑛))

12.7 EXERCISES

Exercise 12.1 — Equivalence of different definitions of P and EXP.. Prove
that the classes P and EXP defined in Definition 12.2 are equal to
∪𝑐∈{1,2,3,…}TIME(𝑛𝑐) and ∪𝑐∈{1,2,3,…}TIME(2𝑛𝑐) respectively. (If
𝑆1, 𝑆2, 𝑆3, … is a collection of sets then the set 𝑆 = ∪𝑐∈{1,2,3,…}𝑆𝑐 is
the set of all elements 𝑒 such that there exists some 𝑐 ∈ {1, 2, 3, …}
where 𝑒 ∈ 𝑆𝑐.)

�

Exercise 12.2 — Robustness to representation. Theorem 12.5 shows that the
classes P and EXP are robust with respect to variations in the choice
of the computational model. This exercise shows that these classes

modeling running time 429

are also robust with respect to our choice of the representation of the
input.

Specifically, let 𝐹 be a function mapping graphs to {0, 1}, and let
𝐹 ′, 𝐹 ″ ∶ {0, 1}∗ → {0, 1} be the functions defined as follows. For every
𝑥 ∈ {0, 1}∗:

• 𝐹 ′(𝑥) = 1 iff 𝑥 represents a graph 𝐺 via the adjacency matrix
representation such that 𝐹(𝐺) = 1.

• 𝐹 ″(𝑥) = 1 iff 𝑥 represents a graph 𝐺 via the adjacency list represen-
tation such that 𝐹(𝐺) = 1.

Prove that 𝐹 ′ ∈ P iff 𝐹 ″ ∈ P.
More generally, for every function 𝐹 ∶ {0, 1}∗ → {0, 1}, the answer

to the question of whether 𝐹 ∈ P (or whether 𝐹 ∈ EXP) is unchanged
by switching representations, as long as transforming one represen-
tation to the other can be done in polynomial time (which essentially
holds for all reasonable representations).

�

Exercise 12.3 — Boolean functions. For every function 𝐹 ∶ {0, 1}∗ → {0, 1}∗,
define 𝐵𝑜𝑜𝑙(𝐹) to be the function mapping {0, 1}∗ to {0, 1} such that
on input a (string representation of a) triple (𝑥, 𝑖, 𝜎) with 𝑥 ∈ {0, 1}∗,
𝑖 ∈ ℕ and 𝜎 ∈ {0, 1},

𝐵𝑜𝑜𝑙(𝐹)(𝑥, 𝑖, 𝜎) =
⎧{{
⎨{{⎩

𝐹(𝑥)𝑖 𝜎 = 0, 𝑖 < |𝐹(𝑥)|
1 𝜎 = 1, 𝑖 < |𝐹(𝑥)|
0 otherwise

(12.8)

where 𝐹(𝑥)𝑖 is the 𝑖-th bit of the string 𝐹(𝑥).
Prove that 𝐹 ∈ P if and only if 𝐵𝑜𝑜𝑙(𝐹) ∈ P.

�

Exercise 12.4 — Composition of polynomial time. Prove that if
𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1}∗ are in P then their composition 𝐹 ∘ 𝐺,
which is the function 𝐻 s.t. 𝐻(𝑥) = 𝐹(𝐺(𝑥)), is also in P.

�

Exercise 12.5 — Non composition of exponential time. Prove that there is some
𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1}∗ s.t. 𝐹, 𝐺 ∈ EXP but 𝐹 ∘ 𝐺 is not in EXP.

�

Exercise 12.6 — Oblivious Turing Machines. We say that a Turing machine 𝑀
is oblivious if there is some function 𝑇 ∶ ℕ × ℕ → ℤ such that for every
input 𝑥 of length 𝑛, and 𝑡 ∈ ℕ it holds that:

• If 𝑀 takes more than 𝑡 steps to halt on the input 𝑥, then in the 𝑡-
th step 𝑀 ’s head will be in the position 𝑇 (𝑛, 𝑡). (Note that this
position depends only on the length of 𝑥 and not its contents.)

430 introduction to theoretical computer science

1 Hint: This is the Turing Machine analog of Theo-
rem 12.13. We replace one step of the original TM 𝑀′

computing 𝐹 with a “sweep” of the obliviouss TM 𝑀
in which it goes 𝑇 steps to the right and then 𝑇 steps
to the left.

• If 𝑀 halts before the 𝑡-th step then 𝑇 (𝑛, 𝑡) = −1.

Prove that if 𝐹 ∈ P then there exists an oblivious Turing machine 𝑀
that computes 𝐹 in polynomial time. See footnote for hint.1

�

Exercise 12.7 Let EDGE ∶ {0, 1}∗ → {0, 1} be the function such that on
input a string representing a triple (𝐿, 𝑖, 𝑗), where 𝐿 is the adjacency
list representation of an 𝑛 vertex graph 𝐺, and 𝑖 and 𝑗 are numbers in
[𝑛], EDGE(𝐿, 𝑖, 𝑗) = 1 if the edge {𝑖, 𝑗} is present in the graph. EDGE
outputs 0 on all other inputs.

1. Prove that EDGE ∈ P.

2. Let PLANARMATRIX ∶ {0, 1}∗ → {0, 1} be the function that
on input an adjacency matrix 𝐴 outputs 1 if and only if the graph
represented by 𝐴 is planar (that is, can be drawn on the plane with-
out edges crossing one another). For this question, you can use
without proof the fact that PLANARMATRIX ∈ P. Prove that
PLANARLIST ∈ P where PLANARLIST ∶ {0, 1}∗ → {0, 1} is the
function that on input an adjacency list 𝐿 outputs 1 if and only if 𝐿
represents a planar graph.

�

Exercise 12.8 — Evaluate NAND circuits. Let NANDEVAL ∶ {0, 1}∗ →
{0, 1} be the function such that for every string representing a pair
(𝑄, 𝑥) where 𝑄 is an 𝑛-input 1-output NAND-CIRC (not NAND-TM!)
program and 𝑥 ∈ {0, 1}𝑛, NANDEVAL(𝑄, 𝑥) = 𝑄(𝑥). On all other
inputs NANDEVAL outputs 0.

Prove that NANDEVAL ∈ P.
�

Exercise 12.9 — Find hard function. Let NANDHARD ∶ {0, 1}∗ → {0, 1}
be the function such that on input a string representing a pair (𝑓, 𝑠)
where

• 𝑓 ∈ {0, 1}2𝑛 for some 𝑛 ∈ ℕ
• 𝑠 ∈ ℕ

NANDHARD(𝑓, 𝑠) = 1 if there is no NAND-CIRC program 𝑄
of at most 𝑠 lines that computes the function 𝐹 ∶ {0, 1}𝑛 → {0, 1}
whose truth table is the string 𝑓 . That is, NANDHARD(𝑓, 𝑠) = 1
if for every NAND-CIRC program 𝑄 of at most 𝑠 lines, there exists
some 𝑥 ∈ {0, 1}𝑛 such that 𝑄(𝑥) ≠ 𝑓𝑥 where 𝑓𝑥 denote the 𝑥-the
coordinate of 𝑓 , using the binary representation to identify {0, 1}𝑛

with the numbers {0, … , 2𝑛 − 1}.

1. Prove that NANDHARD ∈ EXP.

modeling running time 431

2 Hint: Use Item 1, the existence of functions requir-
ing exponentially hard NAND programs, and the fact
that there are only finitely many functions mapping
{0, 1}𝑛 to {0, 1}.

2. (Challenge) Prove that there is an algorithm FINDHARD such
that if 𝑛 is sufficiently large, then FINDHARD(1𝑛) runs in time
22𝑂(𝑛) and outputs a string 𝑓 ∈ {0, 1}2𝑛 that is the truth table of
a function that is not contained in SIZE(2𝑛/(1000𝑛)). (In other
words, if 𝑓 is the string output by FINDHARD(1𝑛) then if we let
𝐹 ∶ {0, 1}𝑛 → {0, 1} be the function such that 𝐹(𝑥) outputs the 𝑥-th
coordinate of 𝑓 , then 𝐹 ∉ SIZE(2𝑛/(1000𝑛)).2

�

Exercise 12.10 Suppose that you are in charge of scheduling courses in
computer science in University X. In University X, computer science
students wake up late, and have to work on their startups in the af-
ternoon, and take long weekends with their investors. So you only
have two possible slots: you can schedule a course either Monday-
Wednesday 11am-1pm or Tuesday-Thursday 11am-1pm.

Let SCHEDULE ∶ {0, 1}∗ → {0, 1} be the function that takes as input
a list of courses 𝐿 and a list of conflicts 𝐶 (i.e., list of pairs of courses
that cannot share the same time slot) and outputs 1 if and only if there
is a “conflict free” scheduling of the courses in 𝐿, where no pair in 𝐶 is
scheduled in the same time slot.

More precisely, the list 𝐿 is a list of strings (𝑐0, … , 𝑐𝑛−1) and the list
𝐶 is a list of pairs of the form (𝑐𝑖, 𝑐𝑗). SCHEDULE(𝐿, 𝐶) = 1 if and
only if there exists partition of 𝑐0, … , 𝑐𝑛−1 into two parts so that there
is no pair (𝑐𝑖, 𝑐𝑗) ∈ 𝐶 such that both 𝑐𝑖 and 𝑐𝑗 are in the same part.

Prove that SCHEDULE ∈ P. As usual, you do not have to provide
the full code to show that this is the case, and can describe operations
as a high level, as well as appeal to any data structures or other results
mentioned in the book or in lecture. Note that to show that a function
𝐹 is in P you need to both (1) present an algorithm 𝐴 that computes
𝐹 in polynomial time, (2) prove that 𝐴 does indeed run in polynomial
time, and does indeed compute the correct answer.

Try to think whether or not your algorithm extends to the case
where there are three possible time slots.

�

12.8 BIBLIOGRAPHICAL NOTES

Because we are interested in the maximum number of steps for inputs
of a given length, running-time as we defined it is often known as
worst case complexity. The minimum number of steps (or “best case”
complexity) to compute a function on length 𝑛 inputs is typically not
a meaningful quantity since essentially every natural problem will
have some trivially easy instances. However, the average case complexity
(i.e., complexity on a “typical” or “random” input) is an interesting
concept which we’ll return to when we discuss cryptography. That

432 introduction to theoretical computer science

said, worst-case complexity is the most standard and basic of the
complexity measures, and will be our focus in most of this book.

Some lower bounds for single-tape Turing machines are given in
[Maa85].

For defining efficiency in the 𝜆 calculus, one needs to be careful
about the order of application of the reduction steps, which can matter
for computational efficiency, see for example this paper.

The notation P/poly is used for historical reasons. It was introduced
by Karp and Lipton, who considered this class as corresponding to
functions that can be computed by polynomial-time Turing Machines
that are given for any input length 𝑛 an advice string of length polyno-
mial in 𝑛.

https://lmcs.episciences.org/1627

	III Efficient algorithms
	Modeling running time
	Formally defining running time
	Polynomial and Exponential Time

	Modeling running time using RAM Machines / NAND-RAM
	Extended Church-Turing Thesis (discussion)
	Efficient universal machine: a NAND-RAM interpreter in NAND-RAM
	Timed Universal Turing Machine

	The time hierarchy theorem
	Non uniform computation
	Oblivious NAND-TM programs
	``Unrolling the loop'': algorithmic transformation of Turing Machines to circuits
	Can uniform algorithms simulate non uniform ones?
	Uniform vs. Nonuniform computation: A recap

	Exercises
	Bibliographical notes

