
11
Efficient computation

“The problem of distinguishing prime numbers from
composite and of resolving the latter into their prime
factors is … one of the most important and useful in
arithmetic … Nevertheless we must confess that all meth-
ods … are either restricted to very special cases or are so
laborious … they try the patience of even the practiced
calculator … and do not apply at all to larger numbers.”,
Carl Friedrich Gauss, 1798

“For practical purposes, the difference between algebraic
and exponential order is often more crucial than the dif-
ference between finite and non-finite.”, Jack Edmunds,
“Paths, Trees, and Flowers”, 1963

“What is the most efficient way to sort a million 32-bit
integers?”, Eric Schmidt to Barack Obama, 2008
“I think the bubble sort would be the wrong way to go.”,
Barack Obama.

So far we have been concerned with which functions are computable
and which ones are not. In this chapter we look at the finer question
of the time that it takes to compute functions, as a function of their input
length. Time complexity is extremely important to both the theory and
practice of computing, but in introductory courses, coding interviews,
and software development, terms such as “𝑂(𝑛) running time” are of-
ten used in an informal way. People don’t have a precise definition of
what a linear-time algorithm is, but rather assume that “they’ll know
it when they see it”. In this book we will define running time pre-
cisely, using the mathematical models of computation we developed
in the previous chapters. This will allow us to ask (and sometimes
answer) questions such as:

Compiled on 11.8.2019 18:41

Learning Objectives:
• Describe at a high level some interesting

computational problems.
• The difference between polynomial and

exponential time.
• Examples of techniques for obtaining efficient

algorithms
• Examples of how seemingly small differences

in problems can potentially make huge
differences in their computational complexity.

382 introduction to theoretical computer science

• “Is there a function that can be computed in 𝑂(𝑛2) time but not in
𝑂(𝑛) time?”

• “Are there natural problems for which the best algorithm (and not
just the best known) requires 2Ω(𝑛) time?”

 Big Idea 15 The running time of an algorithm is not a number, it is
a function of the length of the input.

We will see the precise definition of running time (using Turing
machines and RAM machines / NAND-RAM) in Chapter 12. In this
chapter, we informally survey examples of computational problems.
For some of these problems we know efficient (i.e., 𝑂(𝑛𝑐)-time for
a small constant 𝑐) algorithms, and for others the best known algo-
rithms are exponential. We present these examples to get a feel as to
the kinds of problems that lie on each side of this divide and also see
how sometimes seemingly minor changes in problem formulation can
make the (known) complexity of a problem “jump” from polynomial
to exponential. We do not formally define the notion of running time
in this chapter, but use the same “I know it when I see it” notion of an
𝑂(𝑛) or 𝑂(𝑛2) time algorithms as the one you’ve seen in introduction
to computer science courses.

While the difference between 𝑂(𝑛) and 𝑂(𝑛2) time can be crucial in
practice, we focus on the difference between polynomial and exponential
running time. One advantage is that, as we will see, questions about
polynomial versus exponential time are often insensitive to the choice
of the particular computational model, just as the question of whether
a function 𝐹 is computable is insensitive to whether you use Turing
machines, 𝜆-calculus, or Javascript as your model of computation. One
of the interesting phenomena of computing is that there is often a kind
of a “threshold phenomenon” or “zero-one law” for running time.
Many natural problems can either be solved in polynomial running
time with a not-too-large exponent (e.g., something like 𝑂(𝑛2) or 𝑂(𝑛3)),
or require exponential (e.g., at least 2Ω(𝑛) or 2Ω(√𝑛)) time to solve. The
reasons for this phenomenon are still not fully understood, but some
light on this is shed by the concept of NP completeness, which we will
see in Chapter 14.

This chapter is merely a tiny sample of the landscape of computa-
tional problems and efficient algorithms. If you want to explore the
field of algorithms and data structures more deeply (which I very
much hope you do!), the bibliographical notes contain references to
some excellent texts, some of which are available freely on the web.

efficient computation 383

R
Remark 11.1 — Relations between parts of this book.
Part I of this book contained a quantitative study of
computation of finite functions. We asked what are
the resources (in terms of gates of Boolean circuits or
lines in straight-line programs) required to compute
various finite functions.
Part II of the book contained a qualitative study of
computation of infinite functions (i.e., functions of
unbounded input length). In that part we asked the
qualitative question of whether or not a function is com-
putable at all, regardless of the number of operations.
Part III of the book, beginning with this chapter,
merges the two approaches and contains a quantitative
study of computation of infinite functions. In this part
we ask how do resources for computing a function
scale with the length of the input. In Chapter 12 we
define the notion of running time, and the class P of
functions that can be computed using a number of
steps that scales polynomially with the input length.
In Section 12.6 we will relate this class to the models
of Boolean circuits and straightline programs that we
studied in Part I.

11.1 PROBLEMS ON GRAPHS

In this chapter we discuss several examples of important computa-
tional problems. Many of the problems will involve graphs. We have
already encountered graphs before (see Section 1.4.4) but now quickly
recall the basic notation. A graph 𝐺 consists of a set of vertices 𝑉 and
edges 𝐸 where each edge is a pair of vertices. We typically denote by
𝑛 the number of vertices (and in fact often consider graphs where the
set of vertices 𝑉 equals the set [𝑛] of the integers between 0 and 𝑛 − 1).
In a directed graph, an edge is an ordered pair (𝑢, 𝑣), which we some-
times denote as ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑢 𝑣. In an undirected graph, an edge is an unordered
pair (or simply a set) {𝑢, 𝑣} which we sometimes denote as 𝑢 𝑣 or
𝑢 ∼ 𝑣. An equivalent viewpoint is that an undirected graph corre-
sponds to a directed graph satisfying the property that whenever the
edge ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑢 𝑣 is present then so is the edge ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑣 𝑢. In this chapter we restrict
our attention to graphs that are undirected and simple (i.e., containing
no parallel edges or self-loops). Graphs can be represented either in
the adjacency list or adjacency matrix representation. We can transform
between these two representations using 𝑂(𝑛2) operations, and hence
for our purposes we will mostly consider them as equivalent.

Graphs are so ubiquitous in computer science and other sciences
because they can be used to model a great many of the data that we
encounter. These are not just the “obvious” data such as the road

384 introduction to theoretical computer science

Figure 11.1: Some examples of graphs found on the
Internet.

1 A queue is a data structure for storing a list of el-
ements in “First In First Out (FIFO)” order. Each
“pop” operation removes an element from the queue
in the order that they were “pushed” into it; see the
Wikipedia page.

network (which can be thought of as a graph of whose vertices are
locations with edges corresponding to road segments), or the web
(which can be thought of as a graph whose vertices are web pages
with edges corresponding to links), or social networks (which can
be thought of as a graph whose vertices are people and the edges
correspond to friend relation). Graphs can also denote correlations in
data (e.g., graph of observations of features with edges corresponding
to features that tend to appear together), causal relations (e.g., gene
regulatory networks, where a gene is connected to gene products it
derives), or the state space of a system (e.g., graph of configurations
of a physical system, with edges corresponding to states that can be
reached from one another in one step).

11.1.1 Finding the shortest path in a graph
The shortest path problem is the task of, given a graph 𝐺 = (𝑉 , 𝐸) and
two vertices 𝑠, 𝑡 ∈ 𝑉 , to find the length of the shortest path between
𝑠 and 𝑡 (if such a path exists). That is, we want to find the smallest
number 𝑘 such that there are vertices 𝑣0, 𝑣1, … , 𝑣𝑘 with 𝑣0 = 𝑠, 𝑣𝑘 = 𝑡
and for every 𝑖 ∈ {0, … , 𝑘 − 1} an edge between 𝑣𝑖 and 𝑣𝑖+1. Formally,
we define MINPATH ∶ {0, 1}∗ → {0, 1}∗ to be the function that on
input a triple (𝐺, 𝑠, 𝑡) (represented as a string) outputs the number
𝑘 which is the length of the shortest path in 𝐺 between 𝑠 and 𝑡 or a
string representing no path if no such path exists. (In practice people
often want to also find the actual path and not just its length; it turns
out that the algorithms to compute the length of the path often yield
the actual path itself as a byproduct, and so everything we say about
the task of computing the length also applies to the task of finding the
path.)

If each vertex has at least two neighbors then there can be an expo-
nential number of paths from 𝑠 to 𝑡, but fortunately we do not have to
enumerate them all to find the shortest path. We can find the short-
est path using a breadth first search (BFS), enumerating 𝑠’s neigh-
bors, and then neighbors’ neighbors, etc.. in order. If we maintain
the neighbors in a list we can perform a BFS in 𝑂(𝑛2) time, while us-
ing a queue we can do this in 𝑂(𝑚) time.1 Dijkstra’s algorithm is a
well-known generalization of BFS to weighted graphs. More formally,
the algorithm for computing the function MINPATH is described in
Algorithm 11.2.

https://goo.gl/HY9BJD
https://en.wikipedia.org/wiki/Breadth-first_search
https://goo.gl/PJyc4D

efficient computation 385

Algorithm 11.2 — Shortest path via BFS.

Input: Graph 𝐺 = (𝑉 , 𝐸) and vertices 𝑠, 𝑡 ∈ 𝑉 . Assume
𝑉 = [𝑛].

Output: Length 𝑘 of shortest path from 𝑠 to 𝑡 or ∞ if no
such path exists.

1: Let 𝐷 be length-𝑛 array.
2: Set 𝐷[𝑠] = 0 and 𝐷[𝑖] = ∞ for all 𝑖 ∈ [𝑛] ⧵ {𝑠}.
3: Initialize queue 𝑄 to contain 𝑠.
4: while 𝑆 non empty do
5: Pop 𝑣 from 𝑄
6: if 𝑣 = 𝑡 then
7: return 𝐷[𝑣]
8: end if
9: for 𝑢 neighbor of 𝑣 with 𝐷[𝑢] = ∞ do

10: Set 𝐷[𝑢] ← 𝐷[𝑣] + 1
11: Add 𝑢 to 𝑄.
12: end for
13: end while
14: return ∞

Since we only add to the queue vertices 𝑤 with 𝐷[𝑤] = ∞ (and
then immediately set 𝐷[𝑤] to an actual number), we never push to
the queue a vertex more than once, and hence the algorithm makes at
most 𝑛 “push” and “pop” operations. For each vertex 𝑣, the number
of times we run the inner loop is equal to the degree of 𝑣 and hence
the total running time is proportional to the sum of all degrees which
equals twice the number 𝑚 of edges. Algorithm 11.2 returns the cor-
rect answer since the vertices are added to the queue in the order of
their distance from 𝑠, and hence we will reach 𝑡 after we have explored
all the vertices that are closer to 𝑠 than 𝑡.

R
Remark 11.3 — On data structures. If you’ve ever taken
an algorithms course, you have probably encountered
many data structures such as lists, arrays, queues,
stacks, heaps, search trees, hash tables and many
mores. Data structures are extremely important in
computer science, and each one of those offers differ-
ent tradeoffs between overhead in storage, operations
supported, cost in time for each operation, and more.
For example, if we store 𝑛 items in a list, we will need
a linear (i.e., 𝑂(𝑛) time) scan to retrieve an element,
while we achieve the same operation in 𝑂(1) time if
we used a hash table. However, when we only care
about polynomial-time algorithms, such factors of
𝑂(𝑛) in the running time will not make much differ-

386 introduction to theoretical computer science

Figure 11.2: A knight’s tour can be thought of as a
maximally long path on the graph corresponding to
a chessboard where we put an edge between any two
squares that can be reached by one step via a legal
knight move.

ence. Similarly, if we don’t care about the difference
between 𝑂(𝑛) and 𝑂(𝑛2), then it doesn’t matter if we
represent graphs as adjacency lists or adjacency matri-
ces. Hence we will often describe our algorithms at a
very high level, without specifying the particular data
structures that are used to implement them. How-
ever, it will always be clear that there exists some data
structure that is sufficient for our purposes.

11.1.2 Finding the longest path in a graph
The longest path problem is the task of finding the length of the longest
simple (i.e., non intersecting) path between a given pair of vertices
𝑠 and 𝑡 in a given graph 𝐺. If the graph is a road network, then the
longest path might seem less motivated than the shortest path (unless
you are the kind of person that always prefers the “scenic route”). But
of graphs can and are used to model a variety of phenomena, and in
many such cases finding the longest path (and some of its variants)
can be very useful. In particular, finding the longest path is a gener-
alization of the famous Hamiltonian path problem which asks for a
maximally long simple path (i.e., path that visits all 𝑛 vertices once)
between 𝑠 and 𝑡, as well as the notorious traveling salesman problem
(TSP) of finding (in a weighted graph) a path visiting all vertices of
cost at most 𝑤. TSP is a classical optimization problem, with appli-
cations ranging from planning and logistics to DNA sequencing and
astronomy.

Surprisingly, while we can find the shortest path in 𝑂(𝑚) time,
there is no known algorithm for the longest path problem that signif-
icantly improves on the trivial “exhaustive search” or “brute force”
algorithm that enumerates all the exponentially many possibilities
for such paths. Specifically, the best known algorithms for the longest
path problem take 𝑂(𝑐𝑛) time for some constant 𝑐 > 1. (At the mo-
ment the best record is 𝑐 ∼ 1.65 or so; even obtaining an 𝑂(2𝑛) time
bound is not that simple, see Exercise 11.1.)

11.1.3 Finding the minimum cut in a graph
Given a graph 𝐺 = (𝑉 , 𝐸), a cut of 𝐺 is a subset 𝑆 ⊆ 𝑉 such that 𝑆
is neither empty nor is it all of 𝑉 . The edges cut by 𝑆 are those edges
where one of their endpoints is in 𝑆 and the other is in 𝑆 = 𝑉 ⧵ 𝑆. We
denote this set of edges by 𝐸(𝑆, 𝑆). If 𝑠, 𝑡 ∈ 𝑉 are a pair of vertices
then an 𝑠, 𝑡 cut is a cut such that 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑆 (see Fig. 11.3).
The minimum 𝑠, 𝑡 cut problem is the task of finding, given 𝑠 and 𝑡, the
minimum number 𝑘 such that there is an 𝑠, 𝑡 cut cutting 𝑘 edges (the
problem is also sometimes phrased as finding the set that achieves
this minimum; it turns out that algorithms to compute the number
often yield the set as well). Formally, we define MINCUT ∶ {0, 1}∗ →

https://en.wikipedia.org/wiki/Hamiltonian_path_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem

efficient computation 387

Figure 11.3: A cut in a graph 𝐺 = (𝑉 , 𝐸) is simply a
subset 𝑆 of its vertices. The edges that are cut by 𝑆
are all those whose one endpoint is in 𝑆 and the other
one is in 𝑆 = 𝑉 ⧵ 𝑆. The cut edges are colored red in
this figure.

{0, 1}∗ to be the function that on input a string representing a triple
(𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡) of a graph and two vertices, outputs the minimum
number 𝑘 such that there exists a set 𝑆 ⊆ 𝑉 with 𝑠 ∈ 𝑆, 𝑡 ∉ 𝑆 and
|𝐸(𝑆, 𝑆)| = 𝑘.

Computing minimum 𝑠, 𝑡 cuts is useful for in many applications
since minimum cuts often correspond to bottlenecks. For example, in a
communication or railroad network the minimum cut between 𝑠 and
𝑡 corresponds to the smallest number of edges that, if dropped, will
disconnect 𝑠 from 𝑡. (This was actually the original motivation for this
problem; see Section 11.6.) Similar applications arise in scheduling
and planning. In the setting of image segmentation, one can define a
graph whose vertices are pixels and whose edges correspond to neigh-
boring pixels of distinct colors. If we want to separate the foreground
from the background then we can pick (or guess) a foreground pixel 𝑠
and background pixel 𝑡 and ask for a minimum cut between them.

The naive algorithm for computing MINCUT will check all 2𝑛 pos-
sible subsets of an 𝑛-vertex graph, but it turns out we can do much
better than that. As we’ve seen in this book time and again, there is
more than one algorithm to compute the same function,and some of
those algorithms might be more efficient than others. Luckily the min-
imum cut problem is one of those cases. In particular, as we will see in
the next section, there are algorithms that compute MINCUT in time
which is polynomial in the number of vertices.

11.1.4 Min-Cut Max-Flow and Linear programming
We can obtain a polynomial-time algorithm for computing MINCUT
using the Max-Flow Min-Cut Theorem. This theorem says that the
minimum cut between 𝑠 and 𝑡 equals the maximum amount of flow
we can send from 𝑠 to 𝑡, if every edge has unit capacity. Specifically,
imagine that every edge of the graph corresponded to a pipe that
could carry one unit of fluid per one unit of time (say 1 liter of water
per second). The maximum 𝑠, 𝑡 flow is the maximum units of water
that we could transfer from 𝑠 to 𝑡 over these pipes. If there is an 𝑠, 𝑡
cut of 𝑘 edges, then the maximum flow is at most 𝑘. The reason is
that such a cut 𝑆 acts as a “bottleneck” since at most 𝑘 units can flow
from 𝑆 to its complement at any given unit of time. This means that
the maximum 𝑠, 𝑡 flow is always at most the value of the minimum
𝑠, 𝑡 cut. The surprising and non-trivial content of the Max-Flow Min-
Cut Theorem is that the maximum flow is also at least the value of the
minimum cut, and hence computing the cut is the same as computing
the flow.

The Max-Flow Min-Cut Theorem reduces the task of computing a
minimum cut to the task of computing a maximum flow. However, this
still does not show how to compute such a flow. The Ford-Fulkerson

https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

388 introduction to theoretical computer science

Algorithm is a direct way to compute a flow using incremental im-
provements. But computing flows in polynomial time is also a special
case of a much more general tool known as linear programming.

A flow on a graph 𝐺 of 𝑚 edges can be modeled as a vector 𝑥 ∈ ℝ𝑚

where for every edge 𝑒, 𝑥𝑒 corresponds to the amount of water per
time-unit that flows on 𝑒. We think of an edge 𝑒 an an ordered pair
(𝑢, 𝑣) (we can choose the order arbitrarily) and let 𝑥𝑒 be the amount
of flow that goes from 𝑢 to 𝑣. (If the flow is in the other direction then
we make 𝑥𝑒 negative.) Since every edge has capacity one, we know
that −1 ≤ 𝑥𝑒 ≤ 1 for every edge 𝑒. A valid flow has the property that
the amount of water leaving the source 𝑠 is the same as the amount
entering the sink 𝑡, and that for every other vertex 𝑣, the amount of
water entering and leaving 𝑣 is the same.

Mathematically, we can write these conditions as follows:

∑
𝑒∋𝑠

𝑥𝑒 + ∑
𝑒∋𝑡

𝑥𝑒 = 0

∑
𝑒∋𝑣

𝑥𝑒 = 0 ∀𝑣∈𝑉 ⧵{𝑠,𝑡}

−1 ≤ 𝑥𝑒 ≤ 1 ∀𝑒∈𝐸

(11.1)

where for every vertex 𝑣, summing over 𝑒 ∋ 𝑣 means summing over all
the edges that touch 𝑣.

The maximum flow problem can be thought of as the task of max-
imizing ∑𝑒∋𝑠 𝑥𝑒 over all the vectors 𝑥 ∈ ℝ𝑚 that satisfy the above
conditions (11.1). Maximizing a linear function ℓ(𝑥) over the set of
𝑥 ∈ ℝ𝑚 that satisfy certain linear equalities and inequalities is known
as linear programming. Luckily, there are polynomial-time algorithms
for solving linear programming, and hence we can solve the maxi-
mum flow (and so, equivalently, minimum cut) problem in polyno-
mial time. In fact, there are much better algorithms for maximum-
flow/minimum-cut, even for weighted directed graphs, with currently
the record standing at 𝑂(min{𝑚10/7, 𝑚√𝑛}) time.

Solved Exercise 11.1 — Global minimum cut. Given a graph 𝐺 = (𝑉 , 𝐸),
define the global minimum cut of 𝐺 to be the minimum over all 𝑆 ⊆ 𝑉
with 𝑆 ≠ ∅ and 𝑆 ≠ 𝑉 of the number of edges cut by 𝑆. Prove that
there is a polynomial-time algorithm to compute the global minimum
cut of a graph.

�

Solution:

By the above we know that there is a polynomial-time algorithm
𝐴 that on input (𝐺, 𝑠, 𝑡) finds the minimum 𝑠, 𝑡 cut in the graph

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Linear_programming#Algorithms

efficient computation 389

Figure 11.4: In a convex function 𝑓 (left figure), for
every 𝑥 and 𝑦 and 𝑝 ∈ [0, 1] it holds that 𝑓(𝑝𝑥 + (1 −
𝑝)𝑦) ≤ 𝑝⋅𝑓(𝑥)+(1−𝑝)⋅𝑓(𝑦). In particular this means
that every local minimum of 𝑓 is also a global minimum.
In contrast in a non convex function there can be many
local minima.

Figure 11.5: In the high dimensional case, if 𝑓 is a
convex function (left figure) the global minimum
is the only local minimum, and we can find it by
a local-search algorithm which can be thought of
as dropping a marble and letting it “slide down”
until it reaches the global minimum. In contrast, a
non-convex function (right figure) might have an
exponential number of local minima in which any
local-search algorithm could get stuck.

𝐺. Using 𝐴, we can obtain an algorithm 𝐵 that on input a graph 𝐺
computes the global minimum cut as follows:

1. For every distinct pair 𝑠, 𝑡 ∈ 𝑉 , Algorithms 𝐵 sets 𝑘𝑠,𝑡 ←
𝐴(𝐺, 𝑠, 𝑡).

2. 𝐵 returns the minimum of 𝑘𝑠,𝑡 over all distinct pairs 𝑠, 𝑡

The running time of 𝐵 will be 𝑂(𝑛2) times the running time of 𝐴
and hence polynomial time. Moreover, if the the global minimum
cut is 𝑆, then when 𝐵 reaches an iteration with 𝑠 ∈ 𝑆 and 𝑡 ∉ 𝑆 it
will obtain the value of this cut, and hence the value output by 𝐵
will be the value of the global minimum cut.

The above is our first example of a reduction in the context of
polynomial-time algorithms. Namely, we reduced the task of com-
puting the global minimum cut to the task of computing minimum
𝑠, 𝑡 cuts.

�

11.1.5 Finding the maximum cut in a graph
The maximum cut problem is the task of finding, given an input graph
𝐺 = (𝑉 , 𝐸), the subset 𝑆 ⊆ 𝑉 that maximizes the number of edges cut
by 𝑆. (We can also define an 𝑠, 𝑡-cut variant of the maximum cut like
we did for minimum cut; the two variants have similar complexity but
we the global maximum cut is more common in the literature.) Like
its cousin the minimum cut problem, the maximum cut problem is
also very well motivated. For example, maximum cut arises in VLSI
design, and also has some surprising relation to analyzing the Ising
model in statistical physics.

Surprisingly, while (as we’ve seen) there is a polynomial-time al-
gorithm for the minimum cut problem, there is no known algorithm
solving maximum cut much faster than the trivial “brute force” algo-
rithm that tries all 2𝑛 possibilities for the set 𝑆.

11.1.6 A note on convexity
There is an underlying reason for the sometimes radical difference
between the difficulty of maximizing and minimizing a function over
a domain. If 𝐷 ⊆ ℝ𝑛, then a function 𝑓 ∶ 𝐷 → 𝑅 is convex if for every
𝑥, 𝑦 ∈ 𝐷 and 𝑝 ∈ [0, 1] 𝑓(𝑝𝑥 + (1 − 𝑝)𝑦) ≤ 𝑝𝑓(𝑥) + (1 − 𝑝)𝑓(𝑦). That
is, 𝑓 applied to the 𝑝-weighted midpoint between 𝑥 and 𝑦 is smaller
than the 𝑝-weighted average value of 𝑓 . If 𝐷 itself is convex (which
means that if 𝑥, 𝑦 are in 𝐷 then so is the line segment between them),
then this means that if 𝑥 is a local minimum of 𝑓 then it is also a global
minimum. The reason is that if 𝑓(𝑦) < 𝑓(𝑥) then every point 𝑧 =
𝑝𝑥 + (1 − 𝑝)𝑦 on the line segment between 𝑥 and 𝑦 will satisfy 𝑓(𝑧) ≤
𝑝𝑓(𝑥) + (1 − 𝑝)𝑓(𝑦) < 𝑓(𝑥) and hence in particular 𝑥 cannot be a local

https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Ising_model

390 introduction to theoretical computer science

minimum. Intuitively, local minima of functions are much easier to
find than global ones: after all, any “local search” algorithm that keeps
finding a nearby point on which the value is lower, will eventually
arrive at a local minima. One example of such a local search algorithm
is gradient descent which takes a sequence of small steps, each one in
the direction that would reduce the value by the most amount based
on the current derivative.

Indeed, under certain technical conditions, we can often efficiently
find the minimum of convex functions over a convex domain, and
this is the reason why problems such as minimum cut and shortest
path are easy to solve. On the other hand, maximizing a convex func-
tion over a convex domain (or equivalently, minimizing a concave
function) can often be a hard computational task. A linear function
is both convex and concave, which is the reason that both the maxi-
mization and minimization problems for linear functions can be done
efficiently.

The minimum cut problem is not a priori a convex minimization
task, because the set of potential cuts is discrete and not continuous.
However, it turns out that we can embed it in a continuous and con-
vex set via the (linear) maximum flow problem. The “max flow min
cut” theorem ensuring that this embedding is “tight” in the sense that
the minimum “fractional cut” that we obtain through the maximum-
flow linear program will be the same as the true minimum cut. Un-
fortunately, we don’t know of such a tight embedding in the setting of
the maximum cut problem.

Convexity arises time and again in the context of efficient com-
putation. For example, one of the basic tasks in machine learning is
empirical risk minimization. This is the task of finding a classifier for a
given set of training examples. That is, the input is a list of labeled ex-
amples (𝑥𝑚−1, 𝑦𝑚−1), … , (𝑥𝑚−1, 𝑦𝑚−1), where each 𝑥𝑖 ∈ {0, 1}𝑛 and
𝑦𝑖 ∈ {0, 1}, and the goal is to find a classifier ℎ ∶ {0, 1}𝑛 → {0, 1} (or
sometimes ℎ ∶ {0, 1}𝑛 → ℝ) that minimizes the number of errors. More
generally, we want to find ℎ that minimizes

𝑚−1
∑
𝑖=0

𝐿(𝑦𝑖, ℎ(𝑥𝑖)) (11.2)

where 𝐿 is some loss function measuring how far is the predicted la-
bel ℎ(𝑥𝑖) from the true label 𝑦𝑖. When 𝐿 is the square loss function
𝐿(𝑦, 𝑦′) = (𝑦 − 𝑦′)2 and ℎ is a linear function, empirical risk mini-
mization corresponds to the well-known convex minimization task of
linear regression. In other cases, when the task is non convex, there can
be many global or local minima. That said, even if we don’t find the
global (or even a local) minima, this continuous embedding can still
help us. In particular, when running a local improvement algorithm

https://en.wikipedia.org/wiki/Gradient_descent

efficient computation 391

such as Gradient Descent, we might still find a function ℎ that is “use-
ful” in the sense of having a small error on future examples from the
same distribution.

11.2 BEYOND GRAPHS

Not all computational problems arise from graphs. We now list some
other examples of computational problems that are of great interest.

11.2.1 SAT
A propositional formula 𝜑 involves 𝑛 variables 𝑥1, … , 𝑥𝑛 and the logical
operators AND (∧), OR (∨), and NOT (¬, also denoted as ⋅). We say
that such a formula is in conjunctive normal form (CNF for short) if it is
an AND of ORs of variables or their negations (we call a term of the
form 𝑥𝑖 or 𝑥𝑖 a literal). For example, this is a CNF formula

(𝑥7 ∨ 𝑥22 ∨ 𝑥15) ∧ (𝑥37 ∨ 𝑥22) ∧ (𝑥55 ∨ 𝑥7) (11.3)

The satisfiability problem is the task of determining, given a CNF
formula 𝜑, whether or not there exists a satisfying assignment for 𝜑. A
satisfying assignment for 𝜑 is a string 𝑥 ∈ {0, 1}𝑛 such that if 𝜑 evalu-
ates to True if we assign its variables the values of 𝑥. The SAT problem
might seem as an abstract question of interest only in logic but in fact
SAT is of huge interest in industrial optimization, with applications
including manufacturing planning, circuit synthesis, software verifica-
tion, air-traffic control, scheduling sports tournaments, and more.

2SAT. We say that a formula is a 𝑘-CNF it is an AND of ORs where
each OR involves exactly 𝑘 literals. The 𝑘-SAT problem is the restric-
tion of the satisfiability problem for the case that the input formula is
a 𝑘-CNF. In particular, the 2SAT problem is to find out, given a 2-CNF
formula 𝜑, whether there is an assignment 𝑥 ∈ {0, 1}𝑛 that satisfies
𝜑, in the sense that it makes it evaluate to 1 or “True”. The trivial,
brute-force, algorithm for 2SAT will enumerate all the 2𝑛 assignments
𝑥 ∈ {0, 1}𝑛 but fortunately we can do much better. The key is that
we can think of every constraint of the form ℓ𝑖 ∨ ℓ𝑗 (where ℓ𝑖, ℓ𝑗 are
literals, corresponding to variables or their negations) as an implication
ℓ𝑖 ⇒ ℓ𝑗, since it corresponds to the constraints that if the literal ℓ′

𝑖 = ℓ𝑖
is true then it must be the case that ℓ𝑗 is true as well. Hence we can
think of 𝜑 as a directed graph between the 2𝑛 literals, with an edge
from ℓ𝑖 to ℓ𝑗 corresponding to an implication from the former to the
latter. It can be shown that 𝜑 is unsatisfiable if and only if there is a
variable 𝑥𝑖 such that there is a directed path from 𝑥𝑖 to 𝑥𝑖 as well as
a directed path from 𝑥𝑖 to 𝑥𝑖 (see Exercise 11.2). This reduces 2SAT
to the (efficiently solvable) problem of determining connectivity in
directed graphs.

392 introduction to theoretical computer science

3SAT. The 3SAT problem is the task of determining satisfiability
for 3CNFs. One might think that changing from two to three would
not make that much of a difference for complexity. One would be
wrong. Despite much effort, we do not know of a significantly better
than brute force algorithm for 3SAT (the best known algorithms take
roughly 1.3𝑛 steps).

Interestingly, a similar issue arises time and again in computation,
where the difference between two and three often corresponds to the
difference between tractable and intractable. We do not fully under-
stand the reasons for this phenomenon, though the notions of NP
completeness we will see later does offer a partial explanation. It may
be related to the fact that optimizing a polynomial often amounts to
equations on its derivative. The derivative of a a quadratic polynomial
is linear, while the derivative of a cubic is quadratic, and, as we will
see, the difference between solving linear and quadratic equations can
be quite profound.

11.2.2 Solving linear equations
One of the most useful problems that people have been solving time
and again is solving 𝑛 linear equations in 𝑛 variables. That is, solve
equations of the form

𝑎0,0𝑥0 + 𝑎0,1𝑥1 + ⋯ + 𝑎0,𝑛−1𝑥𝑛−1 = 𝑏0

𝑎1,0𝑥0 + 𝑎1,1𝑥1 + ⋯ + 𝑎1,𝑛−1𝑥𝑛−1 = 𝑏1

⋮+ ⋮ + ⋮ + ⋮ =⋮
𝑎𝑛−1,0𝑥0 + 𝑎𝑛−1,1𝑥1 + ⋯ + 𝑎𝑛−1,𝑛−1𝑥𝑛−1 = 𝑏𝑛−1

(11.4)

where {𝑎𝑖,𝑗}𝑖,𝑗∈[𝑛] and {𝑏𝑖}𝑖∈[𝑛] are real (or rational) numbers. More
compactly, we can write this as the equations 𝐴𝑥 = 𝑏 where 𝐴 is an
𝑛 × 𝑛 matrix, and we think of 𝑥, 𝑏 are column vectors in ℝ𝑛.

The standard Gaussian elimination algorithm can be used to solve
such equations in polynomial time (i.e., determine if they have a so-
lution, and if so, to find it). As we discussed above, if we are willing
to allow some loss in precision, we even have algorithms that handle
linear inequalities, also known as linear programming. In contrast, if
we insist on integer solutions, the task of solving for linear equalities
or inequalities is known as integer programming, and the best known
algorithms are exponential time in the worst case.

R
Remark 11.4 — Bit complexity of numbers. Whenever we
discuss problems whose inputs correspond to num-
bers, the input length corresponds to how many bits
are needed to describe the number (or, as is equiv-
alent up to a constant factor, the number of digits

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Integer_programming

efficient computation 393

in base 10, 16 or any other constant). The difference
between the length of the input and the magnitude
of the number itself can be of course quite profound.
For example, most people would agree that there is
a huge difference between having a billion (i.e. 109)
dollars and having nine dollars. Similarly there is a
huge difference between an algorithm that takes 𝑛
steps on an 𝑛-bit number and an algorithm that takes
2𝑛 steps.
One example, is the problem (discussed below) of
finding the prime factors of a given integer 𝑁 . The
natural algorithm is to search for such a factor by try-
ing all numbers from 1 to 𝑁 , but that would take 𝑁
steps which is exponential in the input length, which
is number of bits needed to describe 𝑁 . (The run-
ning time of this algorithm can be easily improved to
roughly

√
𝑁 , but this is still exponential (i.e., 2𝑛/2) in

the number 𝑛 of bits to describe 𝑁 .) It is an important
and long open question whether there is such an algo-
rithm that runs in time polynomial in the input length
(i.e., polynomial in log𝑁).

11.2.3 Solving quadratic equations
Suppose that we want to solve not just linear but also equations in-
volving quadratic terms of the form 𝑎𝑖,𝑗,𝑘𝑥𝑗𝑥𝑘. That is, suppose that
we are given a set of quadratic polynomials 𝑝1, … , 𝑝𝑚 and consider
the equations {𝑝𝑖(𝑥) = 0}. To avoid issues with bit representations,
we will always assume that the equations contain the constraints
{𝑥2

𝑖 − 𝑥𝑖 = 0}𝑖∈[𝑛]. Since only 0 and 1 satisfy the equation 𝑎2 − 𝑎, this
assumption means that we can restrict attention to solutions in {0, 1}𝑛.
Solving quadratic equations in several variable is a classical and ex-
tremely well motivated problem. This is the generalization of the
classical case of single-variable quadratic equations that generations
of high school students grapple with. It also generalizes the quadratic
assignment problem, introduced in the 1950’s as a way to optimize as-
signment of economic activities. Once again, we do not know a much
better algorithm for this problem than the one that enumerates over
all the 2𝑛 possibilities.

11.3 MORE ADVANCED EXAMPLES

We now list a few more examples of interesting problems that are a
little more advanced but are of significant interest in areas such as
physics, economics, number theory, and cryptography.

11.3.1 Determinant of a matrix
The determinant of a 𝑛 × 𝑛 matrix 𝐴, denoted by det(𝐴), is an ex-
tremely important quantity in linear algebra. For example, it is known

https://www.opt.math.tugraz.at/~cela/papers/qap_bericht.pdf
https://www.opt.math.tugraz.at/~cela/papers/qap_bericht.pdf
https://en.wikipedia.org/wiki/Determinant

394 introduction to theoretical computer science

that det(𝐴) ≠ 0 if and only if 𝐴 is nonsingular, which means that it
has an inverse 𝐴−1, and hence we can always uniquely solve equations
of the form 𝐴𝑥 = 𝑏 where 𝑥 and 𝑏 are 𝑛-dimensional vectors. More
generally, the determinant can be thought of as a quantitative measure
as to what extent 𝐴 is far from being singular. If the rows of 𝐴 are “al-
most” linearly dependent (for example, if the third row is very close
to being a linear combination of the first two rows) then the determi-
nant will be small, while if they are far from it (for example, if they are
are orthogonal to one another, then the determinant will be large). In
particular, for every matrix 𝐴, the absolute value of the determinant
of 𝐴 is at most the product of the norms (i.e., square root of sum of
squares of entries) of the rows, with equality if and only if the rows
are orthogonal to one another.

The determinant can be defined in several ways. One way to define
the determinant of an 𝑛 × 𝑛 matrix 𝐴 is:

det(𝐴) = ∑
𝜋∈𝑆𝑛

sign(𝜋) ∏
𝑖∈[𝑛]

𝐴𝑖,𝜋(𝑖) (11.5)

where 𝑆𝑛 is the set of all permutations from [𝑛] to [𝑛] and the sign of
a permutation 𝜋 is equal to −1 raised to the power of the number of
inversions in 𝜋 (pairs 𝑖, 𝑗 such that 𝑖 > 𝑗 but 𝜋(𝑖) < 𝜋(𝑗)).

This definition suggests that computing det(𝐴) might require
summing over |𝑆𝑛| terms which would take exponential time since
|𝑆𝑛| = 𝑛! > 2𝑛. However, there are other ways to compute the de-
terminant. For example, it is known that det is the only function that
satisfies the following conditions:

1. det(AB) = det(𝐴)det(𝐵) for every square matrices 𝐴, 𝐵.

2. For every 𝑛 × 𝑛 triangular matrix 𝑇 with diagonal entries
𝑑0, … , 𝑑𝑛−1, det(𝑇) = ∏𝑛

𝑖=0 𝑑𝑖. In particular det(𝐼) = 1 where 𝐼 is
the identity matrix. (A triangular matrix is one in which either all
entries below the diagonal, or all entries above the diagonal, are
zero.)

3. det(𝑆) = −1 where 𝑆 is a “swap matrix” that corresponds to
swapping two rows or two columns of 𝐼 . That is, there are two

coordinates 𝑎, 𝑏 such that for every 𝑖, 𝑗, 𝑆𝑖,𝑗 =
⎧{{
⎨{{⎩

1 𝑖 = 𝑗 , 𝑖 ∉ {𝑎, 𝑏}
1 {𝑖, 𝑗} = {𝑎, 𝑏}
0 otherwise

.

Using these rules and the Gaussian elimination algorithm, it is
possible to tell whether 𝐴 is singular or not, and in the latter case, de-
compose 𝐴 as a product of a polynomial number of swap matrices
and triangular matrices. (Indeed one can verify that the row opera-
tions in Gaussian elimination corresponds to either multiplying by a

https://en.wikipedia.org/wiki/Parity_of_a_permutation
https://en.wikipedia.org/wiki/Parity_of_a_permutation
https://en.wikipedia.org/wiki/Gaussian_elimination

efficient computation 395

swap matrix or by a triangular matrix.) Hence we can compute the
determinant for an 𝑛 × 𝑛 matrix using a polynomial time of arithmetic
operations.

11.3.2 Permanent of a matrix
Given an 𝑛 × 𝑛 matrix 𝐴, the permanent of 𝐴 is defined as

perm(𝐴) = ∑
𝜋∈𝑆𝑛

∏
𝑖∈[𝑛]

𝐴𝑖,𝜋(𝑖) . (11.6)

That is, perm(𝐴) is defined analogously to the determinant in (11.5)
except that we drop the term sign(𝜋). The permanent of a matrix is a
natural quantity, and has been studied in several contexts including
combinatorics and graph theory. It also arises in physics where it can
be used to describe the quantum state of multiple Boson particles (see
here and here).

Permanent modulo 2. If the entries of 𝐴 are integers, then we can de-
fine the Boolean function 𝑝𝑒𝑟𝑚2 which outputs on input a matrix 𝐴
the result of the permanent of 𝐴 modulo 2. It turns out that we can
compute 𝑝𝑒𝑟𝑚2(𝐴) in polynomial time. The key is that modulo 2, −𝑥
and +𝑥 are the same quantity and hence, since the only difference
between (11.5) and (11.6) is that some terms are multiplied by −1,
det(𝐴) mod 2 = perm(𝐴) mod 2 for every 𝐴.

Permanent modulo 3. Emboldened by our good fortune above, we
might hope to be able to compute the permanent modulo any prime 𝑝
and perhaps in full generality. Alas, we have no such luck. In a similar
“two to three” type of a phenomenon, we do not know of a much
better than brute force algorithm to even compute the permanent
modulo 3.

11.3.3 Finding a zero-sum equilibrium
A zero sum game is a game between two players where the payoff for
one is the same as the penalty for the other. That is, whatever the first
player gains, the second player loses. As much as we want to avoid
them, zero sum games do arise in life, and the one good thing about
them is that at least we can compute the optimal strategy.

A zero sum game can be specified by an 𝑛 × 𝑛 matrix 𝐴, where if
player 1 chooses action 𝑖 and player 2 chooses action 𝑗 then player one
gets 𝐴𝑖,𝑗 and player 2 loses the same amount. The famous Min Max
Theorem by John von Neumann states that if we allow probabilistic or
“mixed” strategies (where a player does not choose a single action but
rather a distribution over actions) then it does not matter who plays
first and the end result will be the same. Mathematically the min max
theorem is that if we let Δ𝑛 be the set of probability distributions over

http://www.cs.huji.ac.il/labs/learning/Papers/perm.pdf
https://en.wikipedia.org/wiki/Boson_sampling
https://en.wikipedia.org/wiki/Min-max_theorem
https://en.wikipedia.org/wiki/Min-max_theorem

396 introduction to theoretical computer science

[𝑛] (i.e., non-negative columns vectors in ℝ𝑛 whose entries sum to 1)
then

max
𝑝∈∆𝑛

min
𝑞∈∆𝑛

𝑝⊤𝐴𝑞 = min
𝑞∈∆𝑛

max
𝑝∈∆𝑛

𝑝⊤𝐴𝑞 (11.7)

The min-max theorem turns out to be a corollary of linear pro-
gramming duality, and indeed the value of (11.7) can be computed
efficiently by a linear program.

11.3.4 Finding a Nash equilibrium
Fortunately, not all real-world games are zero sum, and we do have
more general games, where the payoff of one player does not neces-
sarily equal the loss of the other. John Nash won the Nobel prize for
showing that there is a notion of equilibrium for such games as well.
In many economic texts it is taken as an article of faith that when
actual agents are involved in such a game then they reach a Nash
equilibrium. However, unlike zero sum games, we do not know of
an efficient algorithm for finding a Nash equilibrium given the de-
scription of a general (non zero sum) game. In particular this means
that, despite economists’ intuitions, there are games for which natu-
ral strategies will take exponential number of steps to converge to an
equilibrium.

11.3.5 Primality testing
Another classical computational problem, that has been of interest
since the ancient greeks, is to determine whether a given number
𝑁 is prime or composite. Clearly we can do so by trying to divide it
with all the numbers in 2, … , 𝑁 − 1, but this would take at least 𝑁
steps which is exponential in its bit complexity 𝑛 = log𝑁 . We can
reduce these 𝑁 steps to

√
𝑁 by observing that if 𝑁 is a composite of

the form 𝑁 = PQ then either 𝑃 or 𝑄 is smaller than
√

𝑁 . But this is
still quite terrible. If 𝑁 is a 1024 bit integer,

√
𝑁 is about 2512, and so

running this algorithm on such an input would take much more than
the lifetime of the universe.

Luckily, it turns out we can do radically better. In the 1970’s, Ra-
bin and Miller gave probabilistic algorithms to determine whether a
given number 𝑁 is prime or composite in time 𝑝𝑜𝑙𝑦(𝑛) for 𝑛 = log𝑁 .
We will discuss the probabilistic model of computation later in this
course. In 2002, Agrawal, Kayal, and Saxena found a deterministic
𝑝𝑜𝑙𝑦(𝑛) time algorithm for this problem. This is surely a development
that mathematicians from Archimedes till Gauss would have found
exciting.

https://en.wikipedia.org/wiki/John_Forbes_Nash_Jr.

efficient computation 397

Figure 11.6: The current computational status of
several interesting problems. For all of them we either
know a polynomial-time algorithm or the known
algorithms require at least 2𝑛𝑐 for some 𝑐 > 0. In
fact for all except the factoring problem, we either
know an 𝑂(𝑛3) time algorithm or the best known
algorithm require at least 2Ω(𝑛) time where 𝑛 is a
natural parameter such that there is a brute force
algorithm taking roughly 2𝑛 or 𝑛! time. Whether this
“cliff” between the easy and hard problem is a real
phenomenon or a reflection of our ignorance is still an
open question.

11.3.6 Integer factoring
Given that we can efficiently determine whether a number 𝑁 is prime
or composite, we could expect that in the latter case we could also ef-
ficiently find the factorization of 𝑁 . Alas, no such algorithm is known.
In a surprising and exciting turn of events, the non existence of such an
algorithm has been used as a basis for encryptions, and indeed it un-
derlies much of the security of the world wide web. We will return to
the factoring problem later in this course. We remark that we do know
much better than brute force algorithms for this problem. While the
brute force algorithms would require 2Ω(𝑛) time to factor an 𝑛-bit inte-
ger, there are known algorithms running in time roughly 2𝑂(√𝑛) and
also algorithms that are widely believed (though not fully rigorously
analyzed) to run in time roughly 2𝑂(𝑛1/3). (By “roughly” we mean that
we neglect factors that are polylogarithmic in 𝑛.)

11.4 OUR CURRENT KNOWLEDGE

The difference between an exponential and polynomial time algo-
rithm might seem merely “quantitative” but it is in fact extremely
significant. As we’ve already seen, the brute force exponential time
algorithm runs out of steam very very fast, and as Edmonds says, in
practice there might not be much difference between a problem where
the best algorithm is exponential and a problem that is not solvable
at all. Thus the efficient algorithms we mention above are widely
used and power many computer science applications. Moreover, a
polynomial-time algorithm often arises out of significant insight to
the problem at hand, whether it is the “max-flow min-cut” result, the
solvability of the determinant, or the group theoretic structure that
enables primality testing. Such insight can be useful regardless of its
computational implications.

At the moment we do not know whether the “hard” problems are
truly hard, or whether it is merely because we haven’t yet found the
right algorithms for them. However, we will now see that there are
problems that do inherently require exponential time. We just don’t
know if any of the examples above fall into that category.

✓ Lecture Recap

• There are many natural problems that have
polynomial-time algorithms, and other natural
problems that we’d love to solve, but for which the
best known algorithms are exponential.

• Often a polynomial time algorithm relies on dis-
covering some hidden structure in the problem, or
finding a surprising equivalent formulation for it.

398 introduction to theoretical computer science

2 Hint: Use dynamic programming to compute for
every 𝑠, 𝑡 ∈ [𝑛] and 𝑆 ⊆ [𝑛] the value 𝑃(𝑠, 𝑡, 𝑆)
which equals 1 if there is a simple path from 𝑠 to 𝑡
that uses exactly the vertices in 𝑆. Do this iteratively
for 𝑆’s of growing sizes.

• There are many interesting problems where there
is an exponential gap between the best known algo-
rithm and the best algorithm that we can rule out.
Closing this gap is one of the main open questions
of theoretical computer science.

11.5 EXERCISES

Exercise 11.1 — exponential time algorithm for longest path. The naive algo-
rithm for computing the longest path in a given graph could take
more than 𝑛! steps. Give a 𝑝𝑜𝑙𝑦(𝑛)2𝑛 time algorithm for the longest
path problem in 𝑛 vertex graphs.2

�

Exercise 11.2 — 2SAT algorithm. For every 2CNF 𝜑, define the graph 𝐺𝜑
on 2𝑛 vertices corresponding to the literals 𝑥1, … , 𝑥𝑛, 𝑥1, … , 𝑥𝑛, such
that there is an edge ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ℓ𝑖 ℓ𝑗 iff the constraint ℓ𝑖 ∨ ℓ𝑗 is in 𝜑. Prove that 𝜑
is unsatisfiable if and only if there is some 𝑖 such that there is a path
from 𝑥𝑖 to 𝑥𝑖 and from 𝑥𝑖 to 𝑥𝑖 in 𝐺𝜑. Show how to use this to solve
2SAT in polynomial time.

�

Exercise 11.3 — Reductions for showing algorithms. The following fact is
true: there is a polynomial-time algorithm BIP that on input a graph
𝐺 = (𝑉 , 𝐸) outputs 1 if and only if the graph is bipartite: there is a
partition of 𝑉 to disjoint parts 𝑆 and 𝑇 such that every edge (𝑢, 𝑣) ∈ 𝐸
satisfies either 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 or 𝑢 ∈ 𝑇 and 𝑣 ∈ 𝑆. Use this
fact to prove that there is polynomial-time algorithm to compute
that following function CLIQUEPARTITION that on input a graph
𝐺 = (𝑉 , 𝐸) outputs 1 if and only if there is a partition of 𝑉 the graph
into two parts 𝑆 and 𝑇 such that both 𝑆 and 𝑇 are cliques: for every
pair of distinct vertices 𝑢, 𝑣 ∈ 𝑆, the edge (𝑢, 𝑣) is in 𝐸 and similarly for
every pair of distinct vertices 𝑢, 𝑣 ∈ 𝑇 , the edge (𝑢, 𝑣) is in 𝐸.

�

11.6 BIBLIOGRAPHICAL NOTES

The classic undergraduate introduction to algorithms text is
[Cor+09]. Two texts that are less “encyclopedic” are Kleinberg and
Tardos [KT06], and Dasgupta, Papadimitriou and Vazirani [DPV08].
Jeff Erickson’s book is an excellent algorithms text that is freely
available online.

The origins of the minimum cut problem date to the cold war.
Specifically, Ford and Fulkerson discovered their max-flow/min-cut
algorithm in 1955 as a way to find out the minimum amount of train

http://jeffe.cs.illinois.edu/teaching/algorithms/

efficient computation 399

tracks that would need to be blown up to disconnect Russia from the
rest of Europe. See the survey [Sch05] for more.

Some algorithms for the longest path problem are given in
[williams2009finding ; bjorklund2014determinant].

11.7 FURTHER EXPLORATIONS

Some topics related to this chapter that might be accessible to ad-
vanced students include: (to be completed)

	III Efficient algorithms
	Efficient computation
	Problems on graphs
	Finding the shortest path in a graph
	Finding the longest path in a graph
	Finding the minimum cut in a graph
	Min-Cut Max-Flow and Linear programming
	Finding the maximum cut in a graph
	A note on convexity

	Beyond graphs
	SAT
	Solving linear equations
	Solving quadratic equations

	More advanced examples
	Determinant of a matrix
	Permanent of a matrix
	Finding a zero-sum equilibrium
	Finding a Nash equilibrium
	Primality testing
	Integer factoring

	Our current knowledge
	Exercises
	Bibliographical notes
	Further explorations

