
1
Mathematical Background

“I found that every number, which may be expressed
from one to ten, surpasses the preceding by one unit:
afterwards the ten is doubled or tripled … until a hun-
dred; then the hundred is doubled and tripled in the same
manner as the units and the tens … and so forth to the
utmost limit of numeration.”, Muhammad ibn Mūsā
al-Khwārizmī, 820, translation by Fredric Rosen,
1831.

In this chapter we review some of the mathematical concepts that
we use in this book. These concepts are typically covered in courses
or textbooks on “mathematics for computer science” or “discrete
mathematics”; see the “Bibliographical Notes” section (Section 1.9)
for several excellent resources on these topics that are freely-available
online.

A mathematician’s apology. Some students might wonder why this
book contains so much math. Mathematics is a language for model-
ing concepts in a precise and unambiguous way. In this book we use
math to model the concept of computation. For example, we will con-
sider questions such as “is there an efficient algorithm to find the prime
factors of a given integer?”. (We will see that this question is particu-
larly interesting, touching on areas as far apart as Internet security and
quantum mechanics!) To even phrase such a question, we need to give
a precise definition of the notion of an algorithm, and of what it means
for an algorithm to be efficient. Also, since there is no empirical exper-
iment that will prove the nonexistence of an algorithm, the only way to
establish such a result is using a mathematical proof.

1.1 THIS CHAPTER: A READER’S MANUAL

Depending on your background, you can approach this chapter in two
different ways:

Compiled on 8.29.2019 11:08

Learning Objectives:
• Recall basic mathematical notions such as

sets, functions, numbers, logical operators
and quantifiers, strings, and graphs.

• Rigorously define Big-𝑂 notation.
• Proofs by induction.
• Practice with reading mathematical

definitions, statements, and proofs.
• Transform an intuitive argument into a

rigorous proof.

48 introduction to theoretical computer science

• If you already have taken a “discrete mathematics”, “mathematics
for computer science” or similar courses, you can take a quick look
at Section 1.2 to see the main tools we will use, Section 1.7 for our
notation and conventions, and then skip ahead to the rest of this
book. Alternatively, you can sit back, relax, and read this chapter
just to get familiar with our notation, as well as to enjoy (or not) my
philosophical musings and attempts at humor. You might also want
to start brushing up on discrete probability, which we’ll use later in
this book.

• If your background is less extensive, see Section 1.9 for some re-
sources on these topics. This chapter briefly covers the concepts
that we need, but you may find it helpful to see a more in-depth
treatment. As usual with math, the best way to get comfort with
this material is to work out exercises on your own.

1.2 A QUICK OVERVIEW OF MATHEMATICAL PREREQUISITES

The main mathematical concepts we use in this book are:

• Proofs: First and foremost, this book involves a heavy dose of for-
mal mathematical reasoning, which includes mathematical defini-
tions, statements, and proofs.

• Sets: The basic set relations of membership (∈) and containment
(⊆), and set operations, principally union (∪), intersection (∩), set
difference (⧵) and Cartesian product (×).

• Tuples and strings: The set Σ𝑘 of length-𝑘 strings/lists over ele-
ments in Σ, where Σ is some finite set which is called the alphabet
(quite often Σ = {0, 1}). We use Σ∗ for the set of all strings of finite
length.

• Some special sets: The set ℕ of natural numbers. Following typical
computer science convention, our indices start from zero and so we
write ℕ = {0, 1, 2, …}. We use [𝑛] for the set {0, 1, 2, … , 𝑛 − 1}. We
use {0, 1}∗ for the set of all binary strings and {0, 1}𝑛 for the set of
strings of length 𝑛 for some natural number 𝑛 ∈ ℕ. If 𝑥 is a string of
length 𝑛, then we refer to its elements by 𝑥0, … , 𝑥𝑛−1.

• Functions: The domain and codomain of a function, properties such
as being one-to-one (also known as injective) or onto (also known
as surjective) functions, as well as partial functions (that, unlike
standard or “total” functions, are not necessarily defined on all
elements of their domain).

• Logical operations: The operations AND (∧), OR (∨), and NOT
(¬) and the quantifiers “there exists” (∃) and “for all” (∀).

mathematical background 49

Figure 1.1: A snippet from the “methods” section of
the “AlphaGo Zero” paper by Silver et al, Nature, 2017.

Figure 1.2: A snippet from the “Zerocash” paper of
Ben-Sasson et al, that forms the basis of the cryptocur-
rency startup Zcash.

• Basic combinatorics: Notions such as (𝑛
𝑘) (the number of 𝑘-sized

subsets of a set of size 𝑛).

• Graphs: Undirected and directed graphs, connectivity, paths, and
cycles.

• Big-𝑂 notation: 𝑂, 𝑜, Ω, 𝜔, Θ notation for analyzing asymptotic
growth of functions.

• Discrete probability: We will use probability theory, and specifi-
cally probability over finite samples spaces such as tossing 𝑛 coins,
including notions such as random variables, expectation, and concen-
tration. We will only use probability theory in the second half of
this text, and will review it beforehand. However, probabilistic
reasoning is a subtle (and extremely useful!) skill, and it’s always
good to start early in acquiring it.

In the rest of this chapter we briefly review the above notions. This
is partially to remind the reader and reinforce material that might
not be fresh in your mind, and partially to introduce our notation
and conventions which might occasionally differ from those you’ve
encountered before.

1.3 READING MATHEMATICAL TEXTS

Reading mathematical texts take practice to get used to the notation
and symbols. Mathematicians use jargon for the same reason that it is
used in many other professions such engineering, law, medicine, and
others. We want to make terms precise and introduce shorthand for
concepts that are frequently reused. Mathematical texts tend to “pack
a lot of punch” per sentence, and so the key is to read them slowly and
carefully, parsing each symbol at a time.

With time and practice you will see that reading mathematical texts
becomes easier and jargon is no longer an issue. Moreover, reading
mathematical texts is one of the most transferable skills you could take
from this book. Our world is changing rapidly, not just in the realm
of technology, but also in many other human endeavors, whether it
is medicine, economics, law or even culture. Whatever your future
aspirations, it is likely that you will encounter texts that use new con-
cepts that you have not seen before (see Fig. 1.1 and Fig. 1.2 for two
recent examples from current “hot areas”). Being able to internalize
and then apply new definitions can be hugely important. It is a skill
that’s much easier to acquire in the relatively safe and stable context of
a mathematical course, where one at least has the guarantee that the
concepts are fully specified, and you have access to your teaching staff
for questions.

https://goo.gl/k8pVpL
http://zerocash-project.org/paper

50 introduction to theoretical computer science

Figure 1.3: An annotated form of Definition 1.1,
marking which type is every object, and with a doodle
explaining what the definition says.

The basic components of a mathematical text are definitions, asser-
tions and proofs.

1.3.1 Definitions
Mathematicians often define new concepts in terms of old concepts.

Here is a mathematical definition which you may have encountered
in the past (and will see again shortly):

Definition 1.1 — One to one function. Let 𝑆, 𝑇 be sets. We say that a
function 𝑓 ∶ 𝑆 → 𝑇 is one to one (also known as injective) if for every
two elements 𝑥, 𝑥′ ∈ 𝑆, if 𝑥 ≠ 𝑥′ then 𝑓(𝑥) ≠ 𝑓(𝑥′).

Definition 1.1 captures a simple concept, but even so it uses quite
a bit of notation. When reading such a definition, it is often useful to
annotate it with a pen as you’re going through it, as in Fig. 1.3. For
example, when you see an identifier such as 𝑓 , 𝑆 or 𝑥, make sure that
you realize what sort of object is it: is it a set, a function, an element,
a number, a gremlin? You might also find it useful to explain the
definition in words to a friend (or to yourself).

1.3.2 Assertions: Theorems, lemmas, claims
Theorems, lemmas, claims and the like are true statements about the
concepts that we defined. Deciding whether to call a particular state-
ment a “Theorem”, a “Lemma” or a “Claim” is a judgement call, and
does not make a mathematical difference. All three correspond to
true statements which can be proven. The difference is that a Theo-
rem refers to a significant result, that we would want to remember
and highlight. A Lemma often refers to a technical result, that is not
necessarily important in its own right, but can be often very useful in
proving other theorems. A Claim is a “throw away” statement, that
we need to use in order to prove some other bigger results, but do not
care so much about for its own sake.

1.3.3 Proofs
Mathematical proofs are the arguments we use to demonstrate that our
theorems, lemmas, and claims area indeed true. We discuss proofs in
Section 1.5 below, but the main point is that the mathematical stan-
dard of proof is very high. Unlike in some other realms, in mathe-
matics a proof is an “airtight” argument that demonstrates that the
statement is true beyond a shadow of a doubt. Some examples in this
section for mathematical proofs are given in Solved Exercise 1.1 and
Section 1.6. As mentioned in the preface, as a general rule, it is more
important you understand the definitions than the theorems, and it is
more important you understand a theorem statement than its proof.

mathematical background 51

1.4 BASIC DISCRETE MATH OBJECTS

In this section we quickly review some of the mathematical objects
(the “basic data structures” of mathematics, if you will) we use in this
book.

1.4.1 Sets
A set is an unordered collection of objects. For example, when we
write 𝑆 = {2, 4, 7}, we mean that 𝑆 denotes the set that contains the
numbers 2, 4, and 7. (We use the notation “2 ∈ 𝑆” to denote that 2 is
an element of 𝑆.) Note that the set {2, 4, 7} and {7, 4, 2} are identical,
since they contain the same elements. Also, a set either contains an
element or does not contain it – there is no notion of containing it
“twice” – and so we could even write the same set 𝑆 as {2, 2, 4, 7}
(though that would be a little weird). The cardinality of a finite set 𝑆,
denoted by |𝑆|, is the number of elements it contains. (Cardinality can
be defined for infinite sets as well; see the sources in Section 1.9.) So,
in the example above, |𝑆| = 3. A set 𝑆 is a subset of a set 𝑇 , denoted
by 𝑆 ⊆ 𝑇 , if every element of 𝑆 is also an element of 𝑇 . (We can
also describe this by saying that 𝑇 is a superset of 𝑆.) For example,
{2, 7} ⊆ {2, 4, 7}. The set that contains no elements is known as the
empty set and it is denoted by ∅.

We can define sets by either listing all their elements or by writing
down a rule that they satisfy such as

EVEN = {𝑥 | 𝑥 = 2𝑦 for some non-negative integer 𝑦} . (1.1)

Of course there is more than one way to write the same set, and of-
ten we will use intuitive notation listing a few examples that illustrate
the rule. For example, we can also define EVEN as

EVEN = {0, 2, 4, …} . (1.2)

Note that a set can be either finite (such as the set {2, 4, 7}) or in-
finite (such as the set EVEN). Also, the elements of a set don’t have
to be numbers. We can talk about the sets such as the set {𝑎, 𝑒, 𝑖, 𝑜, 𝑢}
of all the vowels in the English language, or the set {New York, Los
Angeles, Chicago, Houston, Philadelphia, Phoenix, San Antonio,
San Diego, Dallas} of all cities in the U.S. with population more than
one million per the 2010 census. A set can even have other sets as ele-
ments, such as the set {∅, {1, 2}, {2, 3}, {1, 3}} of all even-sized subsets
of {1, 2, 3}.

Operations on sets: The union of two sets 𝑆, 𝑇 , denoted by 𝑆 ∪ 𝑇 ,
is the set that contains all elements that are either in 𝑆 or in 𝑇 . The
intersection of 𝑆 and 𝑇 , denoted by 𝑆 ∩ 𝑇 , is the set of elements that are
both in 𝑆 and in 𝑇 . The set difference of 𝑆 and 𝑇 , denoted by 𝑆 ⧵ 𝑇 (and

52 introduction to theoretical computer science

1 The letter Z stands for the German word “Zahlen”,
which means numbers.

in some texts also by 𝑆 − 𝑇), is the set of elements that are in 𝑆 but not
in 𝑇 .

Tuples, lists, strings, sequences: A tuple is an ordered collection of items.
For example (1, 5, 2, 1) is a tuple with four elements (also known as
a 4-tuple or quadruple). Since order matters, this is not the same
tuple as the 4-tuple (1, 1, 5, 2) or the 3-tuple (1, 5, 2). A 2-tuple is also
known as a pair. We use the terms tuples and lists interchangeably.
A tuple where every element comes from some finite set Σ (such as
{0, 1}) is also known as a string. Analogously to sets, we denote the
length of a tuple 𝑇 by |𝑇 |. Just like sets, we can also think of infinite
analogues of tuples, such as the ordered collection (1, 2, 4, 9, …) of all
perfect squares. Infinite ordered collections are known as sequences;
we might sometimes use the term “infinite sequence” to emphasize
this, and use “finite sequence” as a synonym for a tuple. (We can
identify a sequence (𝑎0, 𝑎1, 𝑎2, …) of elements in some set 𝑆 with a
function 𝐴 ∶ ℕ → 𝑆 (where 𝑎𝑛 = 𝐴(𝑛) for every 𝑛 ∈ ℕ). Similarly,
we can identify a 𝑘-tuple (𝑎0, … , 𝑎𝑘−1) of elements in 𝑆 with a function
𝐴 ∶ [𝑘] → 𝑆.)

Cartesian product: If 𝑆 and 𝑇 are sets, then their Cartesian product,
denoted by 𝑆 × 𝑇 , is the set of all ordered pairs (𝑠, 𝑡) where 𝑠 ∈ 𝑆 and
𝑡 ∈ 𝑇 . For example, if 𝑆 = {1, 2, 3} and 𝑇 = {10, 12}, then 𝑆 × 𝑇
contains the 6 elements (1, 10), (2, 10), (3, 10), (1, 12), (2, 12), (3, 12).
Similarly if 𝑆, 𝑇 , 𝑈 are sets then 𝑆 × 𝑇 × 𝑈 is the set of all ordered
triples (𝑠, 𝑡, 𝑢) where 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , and 𝑢 ∈ 𝑈 . More generally, for
every positive integer 𝑛 and sets 𝑆0, … , 𝑆𝑛−1, we denote by 𝑆0 × 𝑆1 ×
⋯ × 𝑆𝑛−1 the set of ordered 𝑛-tuples (𝑠0, … , 𝑠𝑛−1) where 𝑠𝑖 ∈ 𝑆𝑖 for
every 𝑖 ∈ {0, … , 𝑛 − 1}. For every set 𝑆, we denote the set 𝑆 × 𝑆 by 𝑆2,
𝑆 × 𝑆 × 𝑆 by 𝑆3, 𝑆 × 𝑆 × 𝑆 × 𝑆 by 𝑆4, and so on and so forth.

1.4.2 Special sets
There are several sets that we will use in this book time and again. The
set

ℕ = {0, 1, 2, …} (1.3)

contains all natural numbers, i.e., non-negative integers. For any natural
number 𝑛 ∈ ℕ, we define the set [𝑛] as {0, … , 𝑛 − 1} = {𝑘 ∈ ℕ ∶
𝑘 < 𝑛}. (We start our indexing of both ℕ and [𝑛] from 0, while many
other texts index those sets from 1. Starting from zero or one is simply
a convention that doesn’t make much difference, as long as one is
consistent about it.)

We will also occasionally use the set ℤ = {… , −2, −1, 0, +1, +2, …}
of (negative and non-negative) integers,1 as well as the set ℝ of real
numbers. (This is the set that includes not just the integers, but also

mathematical background 53

fractional and irrational numbers; e.g., ℝ contains numbers such as
+0.5, −𝜋, etc.) We denote by ℝ+ the set {𝑥 ∈ ℝ ∶ 𝑥 > 0} of positive real
numbers. This set is sometimes also denoted as (0, ∞).

Strings: Another set we will use time and again is

{0, 1}𝑛 = {(𝑥0, … , 𝑥𝑛−1) ∶ 𝑥0, … , 𝑥𝑛−1 ∈ {0, 1}} (1.4)

which is the set of all 𝑛-length binary strings for some natural number
𝑛. That is {0, 1}𝑛 is the set of all 𝑛-tuples of zeroes and ones. This is
consistent with our notation above: {0, 1}2 is the Cartesian product
{0, 1} × {0, 1}, {0, 1}3 is the product {0, 1} × {0, 1} × {0, 1} and so on.

We will write the string (𝑥0, 𝑥1, … , 𝑥𝑛−1) as simply 𝑥0𝑥1 ⋯ 𝑥𝑛−1. For
example,

{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111} . (1.5)

For every string 𝑥 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑛], we write 𝑥𝑖 for the 𝑖𝑡ℎ

element of 𝑥.
We will also often talk about the set of binary strings of all lengths,

which is

{0, 1}∗ = {(𝑥0, … , 𝑥𝑛−1) ∶ 𝑛 ∈ ℕ , , 𝑥0, … , 𝑥𝑛−1 ∈ {0, 1}} . (1.6)

Another way to write this set is as

{0, 1}∗ = {0, 1}0 ∪ {0, 1}1 ∪ {0, 1}2 ∪ ⋯ (1.7)

or more concisely as

{0, 1}∗ = ∪𝑛∈ℕ{0, 1}𝑛 . (1.8)

The set {0, 1}∗ includes the “string of length 0” or “the empty
string”, which we will denote by "". (In using this notation we fol-
low the convention of many programming languages. Other texts
sometimes use 𝜖 or 𝜆 to denote the empty string.)

Generalizing the star operation: For every set Σ, we define

Σ∗ = ∪𝑛∈ℕΣ𝑛 . (1.9)

For example, if Σ = {𝑎, 𝑏, 𝑐, 𝑑, … , 𝑧} then Σ∗ denotes the set of all finite
length strings over the alphabet a-z.

Concatenation: The concatenation of two strings 𝑥 ∈ Σ𝑛 and 𝑦 ∈ Σ𝑚 is
the (𝑛 + 𝑚)-length string 𝑥𝑦 obtained by writing 𝑦 after 𝑥. That is, if
𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}𝑚, then 𝑥𝑦 is equal to the string 𝑧 ∈ {0, 1}𝑛+𝑚

such that for 𝑖 ∈ [𝑛], 𝑧𝑖 = 𝑥𝑖 and for 𝑖 ∈ {𝑛, … , 𝑛 + 𝑚 − 1}, 𝑧𝑖 = 𝑦𝑖−𝑛.

54 introduction to theoretical computer science

2 For two natural numbers 𝑥 and 𝑎, 𝑥 mod 𝑎 (short-
hand for “modulo”) denotes the remainder of 𝑥
when it is divided by 𝑎. That is, it is the number 𝑟 in
{0, … , 𝑎 − 1} such that 𝑥 = 𝑎𝑘 + 𝑟 for some integer 𝑘.
We sometimes also use the notation 𝑥 = 𝑦 (mod 𝑎)
to denote the assertion that 𝑥 mod 𝑎 is the same as 𝑦
mod 𝑎.

1.4.3 Functions
If 𝑆 and 𝑇 are nonempty sets, a function 𝐹 mapping 𝑆 to 𝑇 , denoted
by 𝐹 ∶ 𝑆 → 𝑇 , associates with every element 𝑥 ∈ 𝑆 an element
𝐹(𝑥) ∈ 𝑇 . The set 𝑆 is known as the domain of 𝐹 and the set 𝑇
is known as the codomain of 𝐹 . The image of a function 𝐹 is the set
{𝐹(𝑥) | 𝑥 ∈ 𝑆} which is the subset of 𝐹 ’s codomain consisting of all
output elements that are mapped from some input. (Some texts use
range to denote the image of a function, while other texts use range
to denote the codomain of a function. Hence we will avoid using the
term “range” altogether.) As in the case of sets, we can write a func-
tion either by listing the table of all the values it gives for elements
in 𝑆 or by using a rule. For example if 𝑆 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
and 𝑇 = {0, 1}, then the table below defines a function 𝐹 ∶ 𝑆 → 𝑇 .
Note that this function is the same as the function defined by the rule
𝐹(𝑥) = (𝑥 mod 2).2

Table 1.1: An example of a function.

Input Output

0 0
1 1
2 0
3 1
4 0
5 1
6 0
7 1
8 0
9 1

If 𝑓 ∶ 𝑆 → 𝑇 satisfies that 𝑓(𝑥) ≠ 𝑓(𝑦) for all 𝑥 ≠ 𝑦 then we say
that 𝑓 is one-to-one (Definition 1.1, also known as an injective function
or simply an injection). If 𝐹 satisfies that for every 𝑦 ∈ 𝑇 there is some
𝑥 ∈ 𝑆 such that 𝐹(𝑥) = 𝑦 then we say that 𝐹 is onto (also known as a
surjective function or simply a surjection). A function that is both one-
to-one and onto is known as a bijective function or simply a bijection.
A bijection from a set 𝑆 to itself is also known as a permutation of 𝑆. If
𝐹 ∶ 𝑆 → 𝑇 is a bijection then for every 𝑦 ∈ 𝑇 there is a unique 𝑥 ∈ 𝑆
such that 𝐹(𝑥) = 𝑦. We denote this value 𝑥 by 𝐹 −1(𝑦). Note that 𝐹 −1

is itself a bijection from 𝑇 to 𝑆 (can you see why?).
Giving a bijection between two sets is often a good way to show

they have the same size. In fact, the standard mathematical definition
of the notion that “𝑆 and 𝑇 have the same cardinality” is that there

https://goo.gl/b7Fdzm

mathematical background 55

Figure 1.4: We can represent finite functions as a
directed graph where we put an edge from 𝑥 to
𝑓(𝑥). The onto condition corresponds to requiring
that every vertex in the codomain of the function
has in-degree at least one. The one-to-one condition
corresponds to requiring that every vertex in the
codomain of the function has in-degree at most one. In
the examples above 𝐹 is an onto function, 𝐺 is one to
one, and 𝐻 is neither onto nor one to one.

exists a bijection 𝑓 ∶ 𝑆 → 𝑇 . Further, the cardinality of a set 𝑆 is
defined to be 𝑛 if there is a bijection from 𝑆 to the set {0, … , 𝑛 − 1}.
As we will see later in this book, this is a definition that generalizes to
defining the cardinality of infinite sets.

Partial functions: We will sometimes be interested in partial functions
from 𝑆 to 𝑇 . A partial function is allowed to be undefined on some
subset of 𝑆. That is, if 𝐹 is a partial function from 𝑆 to 𝑇 , then for
every 𝑠 ∈ 𝑆, either there is (as in the case of standard functions) an
element 𝐹(𝑠) in 𝑇 , or 𝐹(𝑠) is undefined. For example, the partial func-
tion 𝐹(𝑥) = √𝑥 is only defined on non-negative real numbers. When
we want to distinguish between partial functions and standard (i.e.,
non-partial) functions, we will call the latter total functions. When we
say “function” without any qualifier then we mean a total function.

The notion of partial functions is a strict generalization of func-
tions, and so every function is a partial function, but not every partial
function is a function. (That is, for every nonempty 𝑆 and 𝑇 , the set
of partial functions from 𝑆 to 𝑇 is a proper superset of the set of total
functions from 𝑆 to 𝑇 .) When we want to emphasize that a function
𝑓 from 𝐴 to 𝐵 might not be total, we will write 𝑓 ∶ 𝐴 →𝑝 𝐵. We can
think of a partial function 𝐹 from 𝑆 to 𝑇 also as a total function from
𝑆 to 𝑇 ∪ {⊥} where ⊥ is a special “failure symbol”. So, instead of
saying that 𝐹 is undefined at 𝑥, we can say that 𝐹(𝑥) = ⊥.

Basic facts about functions: Verifying that you can prove the following
results is an excellent way to brush up on functions:

• If 𝐹 ∶ 𝑆 → 𝑇 and 𝐺 ∶ 𝑇 → 𝑈 are one-to-one functions, then their
composition 𝐻 ∶ 𝑆 → 𝑈 defined as 𝐻(𝑠) = 𝐺(𝐹(𝑠)) is also one to
one.

• If 𝐹 ∶ 𝑆 → 𝑇 is one to one, then there exists an onto function
𝐺 ∶ 𝑇 → 𝑆 such that 𝐺(𝐹(𝑠)) = 𝑠 for every 𝑠 ∈ 𝑆.

• If 𝐺 ∶ 𝑇 → 𝑆 is onto then there exists a one-to-one function 𝐹 ∶ 𝑆 →
𝑇 such that 𝐺(𝐹(𝑠)) = 𝑠 for every 𝑠 ∈ 𝑆.

• If 𝑆 and 𝑇 are finite sets then the following conditions are equiva-
lent to one another: (a) |𝑆| ≤ |𝑇 |, (b) there is a one-to-one function
𝐹 ∶ 𝑆 → 𝑇 , and (c) there is an onto function 𝐺 ∶ 𝑇 → 𝑆. (This is
actually true even for infinite 𝑆 and 𝑇 : in that case (b) (or equiva-
lently (c)) is the commonly accepted definition for |𝑆| ≤ |𝑇 |.)

P
You can find the proofs of these results in many dis-
crete math texts, including for example, Section 4.5
in the Lehman-Leighton-Meyer notes. However, I

https://cs121.boazbarak.org/LLM_data_types.pdf

56 introduction to theoretical computer science

3 It is possible, and sometimes useful, to think of an
undirected graph as the special case of an directed
graph that has the special property that for every pair
𝑢, 𝑣 either both the edges (𝑢, 𝑣) and (𝑣, 𝑢) are present
or neither of them is. However, in many settings there
is a significant difference between undirected and
directed graphs, and so it’s typically best to think of
them as separate categories.

Figure 1.5: An example of an undirected and a di-
rected graph. The undirected graph has vertex set
{1, 2, 3, 4} and edge set {{1, 2}, {2, 3}, {2, 4}}. The
directed graph has vertex set {𝑎, 𝑏, 𝑐} and the edge
set {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎), (𝑎, 𝑐)}.

strongly suggest you try to prove them on your own,
or at least convince yourself that they are true by
proving special cases of those for small sizes (e.g.,
|𝑆| = 3, |𝑇 | = 4, |𝑈| = 5).

Let us prove one of these facts as an example:

Lemma 1.2 If 𝑆, 𝑇 are non-empty sets and 𝐹 ∶ 𝑆 → 𝑇 is one to one, then
there exists an onto function 𝐺 ∶ 𝑇 → 𝑆 such that 𝐺(𝐹(𝑠)) = 𝑠 for
every 𝑠 ∈ 𝑆.

Proof. Choose some 𝑠0 ∈ 𝑆. We will define the function 𝐺 ∶ 𝑇 → 𝑆 as
follows: for every 𝑡 ∈ 𝑇 , if there is some 𝑠 ∈ 𝑆 such that 𝐹(𝑠) = 𝑡 then
set 𝐺(𝑡) = 𝑠 (the choice of 𝑠 is well defined since by the one-to-one
property of 𝐹 , there cannot be two distinct 𝑠, 𝑠′ that both map to 𝑡).
Otherwise, set 𝐺(𝑡) = 𝑠0. Now for every 𝑠 ∈ 𝑆, by the definition of 𝐺,
if 𝑡 = 𝐹(𝑠) then 𝐺(𝑡) = 𝐺(𝐹(𝑠)) = 𝑠. Moreover, this also shows that
𝐺 is onto, since it means that for every 𝑠 ∈ 𝑆 there is some 𝑡, namely
𝑡 = 𝐹(𝑠), such that 𝐺(𝑡) = 𝑠.

�

1.4.4 Graphs
Graphs are ubiquitous in Computer Science, and many other fields as
well. They are used to model a variety of data types including social
networks, scheduling constraints, road networks, deep neural nets,
gene interactions, correlations between observations, and a great
many more. Formal definitions of several kinds of graphs are given
next, but if you have not seen graphs before in a course, I urge you to
read up on them in one of the sources mentioned in Section 1.9.

Graphs come in two basic flavors: undirected and directed.3

Definition 1.3 — Undirected graphs. An undirected graph 𝐺 = (𝑉 , 𝐸) con-
sists of a set 𝑉 of vertices and a set 𝐸 of edges. Every edge is a size
two subset of 𝑉 . We say that two vertices 𝑢, 𝑣 ∈ 𝑉 are neighbors, if
the edge {𝑢, 𝑣} is in 𝐸.

Given this definition, we can define several other properties of
graphs and their vertices. We define the degree of 𝑢 to be the number
of neighbors 𝑢 has. A path in the graph is a tuple (𝑢0, … , 𝑢𝑘) ∈ 𝑉 𝑘+1,
for some 𝑘 > 0 such that 𝑢𝑖+1 is a neighbor of 𝑢𝑖 for every 𝑖 ∈ [𝑘]. A
simple path is a path (𝑢0, … , 𝑢𝑘−1) where all the 𝑢𝑖’s are distinct. A cycle
is a path (𝑢0, … , 𝑢𝑘) where 𝑢0 = 𝑢𝑘. We say that two vertices 𝑢, 𝑣 ∈ 𝑉
are connected if either 𝑢 = 𝑣 or there is a path from (𝑢0, … , 𝑢𝑘) where
𝑢0 = 𝑢 and 𝑢𝑘 = 𝑣. We say that the graph 𝐺 is connected if every pair of
vertices in it is connected.

mathematical background 57

Here are some basic facts about undirected graphs. We give some
informal arguments below, but leave the full proofs as exercises (the
proofs can be found in many of the resources listed in Section 1.9).

Lemma 1.4 In any undirected graph 𝐺 = (𝑉 , 𝐸), the sum of the degrees
of all vertices is equal to twice the number of edges.

Lemma 1.4 can be shown by seeing that every edge {𝑢, 𝑣} con-
tributes twice to the sum of the degrees (once for 𝑢 and the second
time for 𝑣).
Lemma 1.5 The connectivity relation is transitive, in the sense that if 𝑢 is
connected to 𝑣, and 𝑣 is connected to 𝑤, then 𝑢 is connected to 𝑤.

Lemma 1.5 can be shown by simply attaching a path of the form
(𝑢, 𝑢1, 𝑢2, … , 𝑢𝑘−1, 𝑣) to a path of the form (𝑣, 𝑢′

1, … , 𝑢′
𝑘′−1, 𝑤) to obtain

the path (𝑢, 𝑢1, … , 𝑢𝑘−1, 𝑣, 𝑢′
1, … , 𝑢′

𝑘′−1, 𝑤) that connects 𝑢 to 𝑤.

Lemma 1.6 For every undirected graph 𝐺 = (𝑉 , 𝐸) and connected pair
𝑢, 𝑣, the shortest path from 𝑢 to 𝑣 is simple. In particular, for every
connected pair there exists a simple path that connects them.

Lemma 1.6 can be shown by “shortcutting” any non simple path
from 𝑢 to 𝑣 where the same vertex 𝑤 appears twice to remove it (see
Fig. 1.6). It is a good exercise to transforming this intuitive reasoning
to a formal proof:

Figure 1.6: If there is a path from 𝑢 to 𝑣 in a graph
that passes twice through a vertex 𝑤 then we can
“shortcut” it by removing the loop from 𝑤 to itself to
find a path from 𝑢 to 𝑣 that only passes once through
𝑤.

Solved Exercise 1.1 — Connected vertices have simple paths. Prove Lemma 1.6
�

Solution:

The proof follows the idea illustrated in Fig. 1.6. One complica-
tion is that there can be more than one vertex that is visited twice
by a path, and so “shortcutting” might not necessarily result in a

58 introduction to theoretical computer science

simple path; we deal with this by looking at a shortest path between
𝑢 and 𝑣. Details follow.

Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝑢 and 𝑣 in 𝑉 be two connected
vertices in 𝐺. We will prove that there is a simple graph between
𝑢 and 𝑣. Let 𝑘 be the shortest length of a path between 𝑢 and 𝑣
and let 𝑃 = (𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑘−1, 𝑢𝑘) be a 𝑘-length path from 𝑢 to 𝑣
(there can be more than one such path: if so we just choose one of
them). (That is 𝑢0 = 𝑢, 𝑢𝑘 = 𝑣, and (𝑢ℓ, 𝑢ℓ+1) ∈ 𝐸 for all ℓ ∈ [𝑘].)
We claim that 𝑃 is simple. Indeed, suppose otherwise that there is
some vertex 𝑤 that occurs twice in the path: 𝑤 = 𝑢𝑖 and 𝑤 = 𝑢𝑗 for
some 𝑖 < 𝑗. Then we can “shortcut” the path 𝑃 by considering the
path 𝑃 ′ = (𝑢0, 𝑢1, … , 𝑢𝑖−1, 𝑤, 𝑢𝑗+1, … , 𝑢𝑘) obtained by taking the
first 𝑖 vertices of 𝑃 (from 𝑢0 = 0 to the first occurrence of 𝑤) and
the last 𝑘 − 𝑗 ones (from the vertex 𝑢𝑗+1 following the second oc-
currence of 𝑤 to 𝑢𝑘 = 𝑣). The path 𝑃 ′ is a valid path between 𝑢 and
𝑣 since every consecutive pair of vertices in it is connected by an
edge (in particular, since 𝑤 = 𝑢𝑖 = 𝑤𝑗, both (𝑢𝑖−1, 𝑤) and (𝑤, 𝑢𝑗+1)
are edges in 𝐸), but since the length of 𝑃 ′ is 𝑘 − (𝑗 − 𝑖) < 𝑘, this
contradicts the minimality of 𝑃 .

�

R
Remark 1.7 — Finding proofs. Solved Exercise 1.1 is a
good example of the process of finding a proof. You
start by ensuring you understand what the statement
means, and then come up with an informal argument
why it should be true. You then transform the infor-
mal argument into a rigorous proof. This proof need
not be very long or overly formal, but should clearly
establish why the conclusion of the statement follow
from its assumptions.

The concepts of degrees and connectivity extend naturally to di-
rected graphs, defined as follows.

Definition 1.8 — Directed graphs. A directed graph 𝐺 = (𝑉 , 𝐸) consists
of a set 𝑉 and a set 𝐸 ⊆ 𝑉 × 𝑉 of ordered pairs of 𝑉 . We sometimes
denote the edge (𝑢, 𝑣) also as 𝑢 → 𝑣. If the edge 𝑢 → 𝑣 is present
in the graph then we say that 𝑣 is an out-neighbor of 𝑢 and 𝑢 is an
in-neighbor of 𝑣.

A directed graph might contain both 𝑢 → 𝑣 and 𝑣 → 𝑢 in which
case 𝑢 will be both an in-neighbor and an out-neighbor of 𝑣 and vice
versa. The in-degree of 𝑢 is the number of in-neighbors it has, and the
out-degree of 𝑣 is the number of out-neighbors it has. A path in the

mathematical background 59

graph is a tuple (𝑢0, … , 𝑢𝑘) ∈ 𝑉 𝑘+1, for some 𝑘 > 0 such that 𝑢𝑖+1 is an
out-neighbor of 𝑢𝑖 for every 𝑖 ∈ [𝑘]. As in the undirected case, a simple
path is a path (𝑢0, … , 𝑢𝑘−1) where all the 𝑢𝑖’s are distinct and a cycle
is a path (𝑢0, … , 𝑢𝑘) where 𝑢0 = 𝑢𝑘. One type of directed graphs we
often care about is directed acyclic graphs or DAGs, which, as their name
implies, are directed graphs without any cycles:

Definition 1.9 — Directed Acyclic Graphs. We say that 𝐺 = (𝑉 , 𝐸) is a
directed acyclic graph (DAG) if it is a directed graph and there does
not exist a list of vertices 𝑢0, 𝑢1, … , 𝑢𝑘 ∈ 𝑉 such that 𝑢0 = 𝑢𝑘 and
for every 𝑖 ∈ [𝑘], the edge 𝑢𝑖 → 𝑢𝑖+1 is in 𝐸.

The lemmas we mentioned above have analogs for directed graphs.
We again leave the proofs (which are essentially identical to their
undirected analogs) as exercises.

Lemma 1.10 In any directed graph 𝐺 = (𝑉 , 𝐸), the sum of the in-
degrees is equal to the sum of the out-degrees, which is equal to the
number of edges.

Lemma 1.11 In any directed graph 𝐺, if there is a path from 𝑢 to 𝑣 and a
path from 𝑣 to 𝑤, then there is a path from 𝑢 to 𝑤.

Lemma 1.12 For every directed graph 𝐺 = (𝑉 , 𝐸) and a pair 𝑢, 𝑣 such
that there is a path from 𝑢 to 𝑣, the shortest path from 𝑢 to 𝑣 is simple.

R
Remark 1.13 — Labeled graphs. For some applications
we will consider labeled graphs, where the vertices or
edges have associated labels (which can be numbers,
strings, or members of some other set). We can think
of such a graph as having an associated (possibly
partial) labelling function 𝐿 ∶ 𝑉 ∪ 𝐸 → ℒ, where ℒ is
the set of potential labels. However we will typically
not refer explicitly to this labeling function and simply
say things such as “vertex 𝑣 has the label 𝛼”.

1.4.5 Logic operators and quantifiers
If 𝑃 and 𝑄 are some statements that can be true or false, then 𝑃 AND
𝑄 (denoted as 𝑃 ∧ 𝑄) is a statement that is true if and only if both 𝑃
and 𝑄 are true, and 𝑃 OR 𝑄 (denoted as 𝑃 ∨ 𝑄) is a statement that is
true if and only if either 𝑃 or 𝑄 is true. The negation of 𝑃 , denoted as
¬𝑃 or 𝑃 , is true if and only if 𝑃 is false.

Suppose that 𝑃(𝑥) is a statement that depends on some parameter 𝑥
(also sometimes known as an unbound variable) in the sense that for
every instantiation of 𝑥 with a value from some set 𝑆, 𝑃(𝑥) is either
true or false. For example, 𝑥 > 7 is a statement that is not a priori

60 introduction to theoretical computer science

4 In this book, we place the variable bound by a quan-
tifier in a subscript and so write ∀𝑥∈𝑆𝑃(𝑥). Many
other texts do not use this subscript notation and so
will write the same statement as ∀𝑥 ∈ 𝑆, 𝑃(𝑥).

true or false, but becomes true or false whenever we instantiate 𝑥 with
some real number. We denote by ∀𝑥∈𝑆𝑃(𝑥) the statement that is true
if and only if 𝑃(𝑥) is true for every 𝑥 ∈ 𝑆.4 We denote by ∃𝑥∈𝑆𝑃(𝑥) the
statement that is true if and only if there exists some 𝑥 ∈ 𝑆 such that
𝑃(𝑥) is true.

For example, the following is a formalization of the true statement
that there exists a natural number 𝑛 larger than 100 that is not divisi-
ble by 3:

∃𝑛∈ℕ(𝑛 > 100) ∧ (∀𝑘∈𝑁𝑘 + 𝑘 + 𝑘 ≠ 𝑛) . (1.10)

For sufficiently large n. One expression that we will see come up time
and again in this book is the claim that some statement 𝑃(𝑛) is true
“for sufficiently large 𝑛”. What this means is that there exists an inte-
ger 𝑁0 such that 𝑃(𝑛) is true for every 𝑛 > 𝑁0. We can formalize this
as ∃𝑁0∈ℕ∀𝑛>𝑁0

𝑃(𝑛).

1.4.6 Quantifiers for summations and products
The following shorthands for summing up or taking products of sev-
eral numbers are often convenient. If 𝑆 = {𝑠0, … , 𝑠𝑛−1} is a finite set
and 𝑓 ∶ 𝑆 → ℝ is a function, then we write ∑𝑥∈𝑆 𝑓(𝑥) as shorthand for

𝑓(𝑠0) + 𝑓(𝑠1) + 𝑓(𝑠2) + … + 𝑓(𝑠𝑛−1) , (1.11)

and ∏𝑥∈𝑆 𝑓(𝑥) as shorthand for

𝑓(𝑠0) ⋅ 𝑓(𝑠1) ⋅ 𝑓(𝑠2) ⋅ … ⋅ 𝑓(𝑠𝑛−1) . (1.12)

For example, the sum of the squares of all numbers from 1 to 100
can be written as

∑
𝑖∈{1,…,100}

𝑖2 . (1.13)

Since summing up over intervals of integers is so common, there
is a special notation for it. For every two integers, 𝑎 ≤ 𝑏, ∑𝑏

𝑖=𝑎 𝑓(𝑖)
denotes ∑𝑖∈𝑆 𝑓(𝑖) where 𝑆 = {𝑥 ∈ ℤ ∶ 𝑎 ≤ 𝑥 ≤ 𝑏}. Hence, we can
write the sum (1.13) as

100
∑
𝑖=1

𝑖2 . (1.14)

1.4.7 Parsing formulas: bound and free variables
In mathematics, as in coding, we often have symbolic “variables” or
“parameters”. It is important to be able to understand, given some
formula, whether a given variable is bound or free in this formula. For

mathematical background 61

example, in the following statement 𝑛 is free but 𝑎 and 𝑏 are bound by
the ∃ quantifier:

∃𝑎,𝑏∈ℕ(𝑎 ≠ 1) ∧ (𝑎 ≠ 𝑛) ∧ (𝑛 = 𝑎 × 𝑏) (1.15)

Since 𝑛 is free, it can be set to any value, and the truth of the state-
ment (1.15) depends on the value of 𝑛. For example, if 𝑛 = 8 then
(1.15) is true, but for 𝑛 = 11 it is false. (Can you see why?)

The same issue appears when parsing code. For example, in the
following snippet from the C programming language

for (int i=0 ; i<n ; i=i+1) {

printf("*");

}

the variable i is bound within the for block but the variable n is
free.

The main property of bound variables is that we can rename them
(as long as the new name doesn’t conflict with another used variable)
without changing the meaning of the statement. Thus for example the
statement

∃𝑥,𝑦∈ℕ(𝑥 ≠ 1) ∧ (𝑥 ≠ 𝑛) ∧ (𝑛 = 𝑥 × 𝑦) (1.16)

is equivalent to (1.15) in the sense that it is true for exactly the same
set of 𝑛’s.

Similarly, the code

for (int j=0 ; j<n ; j=j+1) {

printf("*");

}

produces the same result as the code above that used i instead of j.

R
Remark 1.14 — Aside: mathematical vs programming no-
tation. Mathematical notation has a lot of similarities
with programming language, and for the same rea-
sons. Both are formalisms meant to convey complex
concepts in a precise way. However, there are some
cultural differences. In programming languages, we
often try to use meaningful variable names such as
NumberOfVertices while in math we often use short
identifiers such as 𝑛. Part of it might have to do with
the tradition of mathematical proofs as being hand-
written and verbally presented, as opposed to typed
up and compiled. Another reason is if the wrong
variable name is used in a proof, at worst is causes
confusion to readers; when the wrong variable name

62 introduction to theoretical computer science

is used in a program, planes might crash, patients
might die, and rockets could explode.
One consequence of that is that in mathematics we
often end up reusing identifiers, and also “run out”
of letters and hence use Greek letters too, as well as
distinguish between small and capital letters and
different font faces. Similarly, mathematical notation
tends to use quite a lot of “overloading”, using oper-
ators such as + for a great variety of objects (e.g., real
numbers, matrices, finite field elements, etc..), and
assuming that the meaning can be inferred from the
context.
Both fields have a notion of “types”, and in math
we often try to reserve certain letters for variables
of a particular type. For example, variables such as
𝑖, 𝑗, 𝑘, ℓ, 𝑚, 𝑛 will often denote integers, and 𝜖 will
often denote a small positive real number (see Sec-
tion 1.7 for more on these conventions). When reading
or writing mathematical texts, we usually don’t have
the advantage of a “compiler” that will check type
safety for us. Hence it is important to keep track of the
type of each variable, and see that the operations that
are performed on it “make sense”.
Kun’s book [Kun18] contains an extensive discus-
sion on the similarities and differences between the
cultures of mathematics and programming.

1.4.8 Asymptotics and Big-𝑂 notation

“log log log𝑛 has been proved to go to infinity, but has
never been observed to do so.”, Anonymous, quoted by
Carl Pomerance (2000)

It is often very cumbersome to describe precisely quantities such
as running time and is also not needed, since we are typically mostly
interested in the “higher order terms”. That is, we want to understand
the scaling behavior of the quantity as the input variable grows. For
example, as far as running time goes, the difference between an 𝑛5-
time algorithm and an 𝑛2-time one is much more significant than the
difference between an 100𝑛2 + 10𝑛 time algorithm and an 10𝑛2 time
algorithm. For this purpose, 𝑂-notation is extremely useful as a way
to “declutter” our text and focus our attention on what really matters.
For example, using 𝑂-notation, we can say that both 100𝑛2 + 10𝑛
and 10𝑛2 are simply Θ(𝑛2) (which informally means “the same up to
constant factors”), while 𝑛2 = 𝑜(𝑛5) (which informally means that 𝑛2

is “much smaller than” 𝑛5).
Generally (though still informally), if 𝐹, 𝐺 are two functions map-

ping natural numbers to non-negative reals, then “𝐹 = 𝑂(𝐺)” means
that 𝐹(𝑛) ≤ 𝐺(𝑛) if we don’t care about constant factors, while

mathematical background 63

Figure 1.7: If 𝐹(𝑛) = 𝑜(𝐺(𝑛)) then for sufficiently
large 𝑛, 𝐹(𝑛) will be smaller than 𝐺(𝑛). For example,
if Algorithm 𝐴 runs in time 1000 ⋅ 𝑛 + 106 and
Algorithm 𝐵 runs in time 0.01 ⋅ 𝑛2 then even though
𝐵 might be more efficient for smaller inputs, when
the inputs get sufficiently large, 𝐴 will run much faster
than 𝐵.

“𝐹 = 𝑜(𝐺)” means that 𝐹 is much smaller than 𝐺, in the sense that no
matter by what constant factor we multiply 𝐹 , if we take 𝑛 to be large
enough then 𝐺 will be bigger (for this reason, sometimes 𝐹 = 𝑜(𝐺)
is written as 𝐹 ≪ 𝐺). We will write 𝐹 = Θ(𝐺) if 𝐹 = 𝑂(𝐺) and
𝐺 = 𝑂(𝐹), which one can think of as saying that 𝐹 is the same as 𝐺 if
we don’t care about constant factors. More formally, we define Big-𝑂
notation as follows:

Definition 1.15 — Big-𝑂 notation. Let ℝ+ = {𝑥 ∈ ℝ | 𝑥 > 0} be the set
of positive real numbers. For two functions 𝐹, 𝐺 ∶ ℕ → ℝ+, we say
that 𝐹 = 𝑂(𝐺) if there exist numbers 𝑎, 𝑁0 ∈ ℕ such that 𝐹(𝑛) ≤
𝑎 ⋅ 𝐺(𝑛) for every 𝑛 > 𝑁0. We say that 𝐹 = Θ(𝐺) if 𝐹 = 𝑂(𝐺) and
𝐺 = 𝑂(𝐹). We say that 𝐹 = Ω(𝐺) if 𝐺 = 𝑂(𝐹).

We say that 𝐹 = 𝑜(𝐺) if for every 𝜖 > 0 there is some 𝑁0 such
that 𝐹(𝑛) < 𝜖𝐺(𝑛) for every 𝑛 > 𝑁0. We say that 𝐹 = 𝜔(𝐺) if
𝐺 = 𝑜(𝐹).

It’s often convenient to use “anonymous functions” in the context of
𝑂-notation. For example, when we write a statement such as 𝐹(𝑛) =
𝑂(𝑛3), we mean that 𝐹 = 𝑂(𝐺) where 𝐺 is the function defined by
𝐺(𝑛) = 𝑛3. Chapter 7 in Jim Apsnes’ notes on discrete math provides
a good summary of 𝑂 notation; see also this tutorial for a gentler and
more programmer-oriented introduction.

𝑂 is not equality. Using the equality sign for 𝑂-notation is extremely
common, but is somewhat of a misnomer, since a statement such as
𝐹 = 𝑂(𝐺) really means that 𝐹 is in the set {𝐺′ ∶ ∃𝑁,𝑐 s.t. ∀𝑛>𝑁𝐺′(𝑛) ≤
𝑐𝐺(𝑛)}. If anything, it makes more sense to use inequalities and write
𝐹 ≤ 𝑂(𝐺) and 𝐹 ≥ Ω(𝐺), reserving equality for 𝐹 = Θ(𝐺), and
so we will sometimes use this notation too, but since the equality
notation is quite firmly entrenched we often stick to it as well. (Some
texts write 𝐹 ∈ 𝑂(𝐺) instead of 𝐹 = 𝑂(𝐺), but we will not use this
notation.) Despite the misleading equality sign, you should remember
that a statement such as 𝐹 = 𝑂(𝐺) means that 𝐹 is “at most” 𝐺 in
some rough sense when we ignore constants, and a statement such as
𝐹 = Ω(𝐺) means that 𝐹 is “at least” 𝐺 in the same rough sense.

1.4.9 Some “rules of thumb” for Big-𝑂 notation
There are some simple heuristics that can help when trying to com-
pare two functions 𝐹 and 𝐺:

• Multiplicative constants don’t matter in 𝑂-notation, and so if
𝐹(𝑛) = 𝑂(𝐺(𝑛)) then 100𝐹(𝑛) = 𝑂(𝐺(𝑛)).

• When adding two functions, we only care about the larger one. For
example, for the purpose of 𝑂-notation, 𝑛3 + 100𝑛2 is the same as

http://www.cs.yale.edu/homes/aspnes/classes/202/notes.pdf
http://discrete.gr/complexity/

64 introduction to theoretical computer science

𝑛3, and in general in any polynomial, we only care about the larger
exponent.

• For every two constants 𝑎, 𝑏 > 0, 𝑛𝑎 = 𝑂(𝑛𝑏) if and only if 𝑎 ≤ 𝑏,
and 𝑛𝑎 = 𝑜(𝑛𝑏) if and only if 𝑎 < 𝑏. For example, combining the two
observations above, 100𝑛2 + 10𝑛 + 100 = 𝑜(𝑛3).

• Polynomial is always smaller than exponential: 𝑛𝑎 = 𝑜(2𝑛𝜖) for
every two constants 𝑎 > 0 and 𝜖 > 0 even if 𝜖 is much smaller than
𝑎. For example, 100𝑛100 = 𝑜(2

√𝑛).

• Similarly, logarithmic is always smaller than polynomial: (log𝑛)𝑎

(which we write as log𝑎 𝑛) is 𝑜(𝑛𝜖) for every two constants 𝑎, 𝜖 > 0.
For example, combining the observations above, 100𝑛2 log100 𝑛 =
𝑜(𝑛3).

R
Remark 1.16 — Big 𝑂 for other applications (optional).
While Big-𝑂 notation is often used to analyze running
time of algorithms, this is by no means the only ap-
plication. We can use 𝑂 notation to bound asymptotic
relations between any functions mapping integers
to positive numbers. It can be used regardless of
whether these functions are a measure of running
time, memory usage, or any other quantity that may
have nothing to do with computation. Here is one
example which is unrelated to this book (and hence
one that you can feel free to skip): one way to state the
Riemann Hypothesis (one of the most famous open
questions in mathematics) is that it corresponds to
the conjecture that the number of primers between 0
and 𝑛 is equal to ∫𝑛

2
1

ln𝑥 𝑑𝑥 up to an additive error of
magnitude at most 𝑂(√𝑛 log𝑛).

1.5 PROOFS

Many people think of mathematical proofs as a sequence of logical
deductions that starts from some axioms and ultimately arrives at a
conclusion. In fact, some dictionaries define proofs that way. This is
not entirely wrong, but at its essence mathematical proof of a state-
ment X is simply an argument that convinces the reader that X is true
beyond a shadow of a doubt.

To produce such a proof you need to:

1. Understand precisely what X means.

2. Convince yourself that X is true.

https://en.wikipedia.org/wiki/Riemann_hypothesis
http://www.thefreedictionary.com/mathematical+proof

mathematical background 65

3. Write your reasoning down in plain, precise and concise English
(using formulas or notation only when they help clarity).

In many cases, the first part is the most important one. Understand-
ing what a statement means is oftentimes more than halfway towards
understanding why it is true. In third part, to convince the reader
beyond a shadow of a doubt, we will often want to break down the
reasoning to “basic steps”, where each basic step is simple enough
to be “self evident”. The combination of all steps yields the desired
statement.

1.5.1 Proofs and programs
There is a great deal of similarity between the process of writing proofs
and that of writing programs, and both require a similar set of skills.
Writing a program involves:

1. Understanding what is the task we want the program to achieve.

2. Convincing yourself that the task can be achieved by a computer,
perhaps by planning on a whiteboard or notepad how you will
break it up to simpler tasks.

3. Converting this plan into code that a compiler or interpreter can
understand, by breaking up each task into a sequence of the basic
operations of some programming language.

In programs as in proofs, step 1 is often the most important one.
A key difference is that the reader for proofs is a human being and
the reader for programs is a computer. (This difference is eroding
with time as more proofs are being written in a machine verifiable form;
moreover, to ensure correctness and maintinability of programs, it is
important that they can be read and understood by humans.) Thus
our emphasis is on readability and having a clear logical flow for our
proof (which is not a bad idea for programs as well). When writing a
proof, you should think of your audience as an intelligent but highly
skeptical and somewhat petty reader, that will “call foul” at every step
that is not well justified.

1.5.2 Proof writing style
A mathematical proof is a piece of writing, but it is a specific genre
of writing with certain conventions and preferred styles. As in any
writing, practice makes perfect, and it is also important to revise your
drafts for clarity.

In a proof for the statement 𝑋, all the text between the words
“Proof:” and “QED” should be focused on establishing that 𝑋 is true.
Digressions, examples, or ruminations should be kept outside these

66 introduction to theoretical computer science

two words, so they do not confuse the reader. The proof should have
a clear logical flow in the sense that every sentence or equation in it
should have some purpose and it should be crystal-clear to the reader
what this purpose is. When you write a proof, for every equation or
sentence you include, ask yourself:

1. Is this sentence or equation stating that some statement is true?

2. If so, does this statement follow from the previous steps, or are we
going to establish it in the next step?

3. What is the role of this sentence or equation? Is it one step towards
proving the original statement, or is it a step towards proving some
intermediate claim that you have stated before?

4. Finally, would the answers to questions 1-3 be clear to the reader?
If not, then you should reorder, rephrase or add explanations.

Some helpful resources on mathematical writing include this hand-
out by Lee, this handout by Hutching, as well as several of the excel-
lent handouts in Stanford’s CS 103 class.

1.5.3 Patterns in proofs

“If it was so, it might be; and if it were so, it would be;
but as it isn’t, it ain’t. That’s logic.”, Lewis Carroll,
Through the looking-glass.

Just like in programming, there are several common patterns of
proofs that occur time and again. Here are some examples:

Proofs by contradiction: One way to prove that 𝑋 is true is to show
that if 𝑋 was false it would result in a contradiction. Such proofs
often start with a sentence such as “Suppose, towards a contradiction,
that 𝑋 is false” and end with deriving some contradiction (such as a
violation of one of the assumptions in the theorem statement). Here is
an example:

Lemma 1.17 There are no natural numbers 𝑎, 𝑏 such that
√

2 = 𝑎
𝑏 .

Proof. Suppose, towards a contradiction that this is false, and so let
𝑎 ∈ ℕ be the smallest number such that there exists some 𝑏 ∈ ℕ
satisfying

√
2 = 𝑎

𝑏 . Squaring this equation we get that 2 = 𝑎2/𝑏2 or
𝑎2 = 2𝑏2 (∗). But this means that 𝑎2 is even, and since the product of
two odd numbers is odd, it means that 𝑎 is even as well, or in other
words, 𝑎 = 2𝑎′ for some 𝑎′ ∈ ℕ. Yet plugging this into (∗) shows that
4𝑎′2 = 2𝑏2 which means 𝑏2 = 2𝑎′2 is an even number as well. By the
same considerations as above we get that 𝑏 is even and hence 𝑎/2 and

https://sites.math.washington.edu/~lee/Writing/writing-proofs.pdf
https://sites.math.washington.edu/~lee/Writing/writing-proofs.pdf
https://math.berkeley.edu/~hutching/teach/proofs.pdf
http://web.stanford.edu/class/cs103/

mathematical background 67

𝑏/2 are two natural numbers satisfying 𝑎/2
𝑏/2 =

√
2, contradicting the

minimality of 𝑎.
�

Proofs of a universal statement: Often we want to prove a statement 𝑋 of
the form “Every object of type 𝑂 has property 𝑃 .” Such proofs often
start with a sentence such as “Let 𝑜 be an object of type 𝑂” and end by
showing that 𝑜 has the property 𝑃 . Here is a simple example:

Lemma 1.18 For every natural number 𝑛 ∈ 𝑁 , either 𝑛 or 𝑛 + 1 is even.

Proof. Let 𝑛 ∈ 𝑁 be some number. If 𝑛/2 is a whole number then
we are done, since then 𝑛 = 2(𝑛/2) and hence it is even. Otherwise,
𝑛/2 + 1/2 is a whole number, and hence 2(𝑛/2 + 1/2) = 𝑛 + 1 is even.

�

Proofs of an implication: Another common case is that the statement 𝑋
has the form “𝐴 implies 𝐵”. Such proofs often start with a sentence
such as “Assume that 𝐴 is true” and end with a derivation of 𝐵 from
𝐴. Here is a simple example:

Lemma 1.19 If 𝑏2 ≥ 4𝑎𝑐 then there is a solution to the quadratic equa-
tion 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.

Proof. Suppose that 𝑏2 ≥ 4𝑎𝑐. Then 𝑑 = 𝑏2 − 4𝑎𝑐 is a non-negative
number and hence it has a square root 𝑠. Thus 𝑥 = (−𝑏 + 𝑠)/(2𝑎)
satisfies

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎(−𝑏 + 𝑠)2/(4𝑎2) + 𝑏(−𝑏 + 𝑠)/(2𝑎) + 𝑐
= (𝑏2 − 2𝑏𝑠 + 𝑠2)/(4𝑎) + (−𝑏2 + 𝑏𝑠)/(2𝑎) + 𝑐 .

(1.17)

�

Rearranging the terms of (1.17) we get

𝑠2/(4𝑎) + 𝑐 − 𝑏2/(4𝑎) = (𝑏2 − 4𝑎𝑐)/(4𝑎) + 𝑐 − 𝑏2/(4𝑎) = 0 (1.18)

Proofs of equivalence: If a statement has the form “𝐴 if and only if
𝐵” (often shortened as “𝐴 iff 𝐵”) then we need to prove both that 𝐴
implies 𝐵 and that 𝐵 implies 𝐴. We call the implication that 𝐴 implies
𝐵 the “only if” direction, and the implication that 𝐵 implies 𝐴 the “if”
direction.

Proofs by combining intermediate claims: When a proof is more complex,
it is often helpful to break it apart into several steps. That is, to prove
the statement 𝑋, we might first prove statements 𝑋1,𝑋2, and 𝑋3 and
then prove that 𝑋1 ∧ 𝑋2 ∧ 𝑋3 implies 𝑋. (Recall that ∧ denotes the
logical AND operator.)

68 introduction to theoretical computer science

Proofs by case distinction: This is a special case of the above, where to
prove a statement 𝑋 we split into several cases 𝐶1, … , 𝐶𝑘, and prove
that (a) the cases are exhaustive, in the sense that one of the cases 𝐶𝑖
must happen and (b) go one by one and prove that each one of the
cases 𝐶𝑖 implies the result 𝑋 that we are after.

Proofs by induction: We discuss induction and give an example in
Section 1.6.1 below. We can think of such proofs as a variant of the
above, where we have an unbounded number of intermediate claims
𝑋0, 𝑋2, … , 𝑋𝑘, and we prove that 𝑋0 is true, as well as that 𝑋0 implies
𝑋1, and that 𝑋0 ∧ 𝑋1 implies 𝑋2, and so on and so forth. The website
for CMU course 15-251 contains a useful handout on potential pitfalls
when making proofs by induction.

Without loss of generality (w.l.o.g): This term can be initially quite con-
fusing. It is essentially a way to simplify proofs by case distinctions.
The idea is that if Case 1 is equal to Case 2 up to a change of variables
or a similar transformation, then the proof of Case 1 will also imply
the proof of Case 2. It is always a statement that should be viewed
with suspicion. Whenever you see it in a proof, ask yourself if you
understand why the assumption made is truly without loss of gen-
erality, and when you use it, try to see if the use is indeed justified.
When writing a proof, sometimes it might be easiest to simply repeat
the proof of the second case (adding a remark that the proof is very
similar to the first one).

R
Remark 1.20 — Hierarchical Proofs (optional). Mathe-
matical proofs are ultimately written in English prose.
The well-known computer scientist Leslie Lamport
argues that this is a problem, and proofs should be
written in a more formal and rigorous way. In his
manuscript he proposes an approach for structured
hierarchical proofs, that have the following form:

• A proof for a statement of the form “If 𝐴 then 𝐵”
is a sequence of numbered claims, starting with
the assumption that 𝐴 is true, and ending with the
claim that 𝐵 is true.

• Every claim is followed by a proof showing how
it is derived from the previous assumptions or
claims.

• The proof for each claim is itself a sequence of
subclaims.

The advantage of Lamport’s format is that the role
that every sentence in the proof plays is very clear.
It is also much easier to transform such proofs into
machine-checkable forms. The disadvantage is that

http://www.cs.cmu.edu/~./15251/notes/induction-pitfalls.pdf
https://en.wikipedia.org/wiki/Leslie_Lamport
https://lamport.azurewebsites.net/pubs/proof.pdf

mathematical background 69

such proofs can be tedious to read and write, with
less differentiation between the important parts of the
arguments versus the more routine ones.

1.6 EXTENDED EXAMPLE: TOPOLOGICAL SORTING

In this section we will prove the following: every directed acyclic
graph (DAG, see Definition 1.9) can be arranged in layers so that for
all directed edges 𝑢 → 𝑣, the layer of 𝑣 is larger than the layer of 𝑢.
This result is known as topological sorting and is used in many appli-
cations, including task scheduling, build systems, software package
management, spreadsheet cell calculations, and many others (see
Fig. 1.8). In fact, we will also use it ourselves later on in this book.

Figure 1.8: An example of topological sorting. We con-
sider a directed graph corresponding to a prerequisite
graph of the courses in some Computer Science pro-
gram. The edge 𝑢 → 𝑣 means that the course 𝑢 is a
prerequisite for the course 𝑣. A layering or “topologi-
cal sorting” of this graph is the same as mapping the
courses to semesters so that if we decide to take the
course 𝑣 in semester 𝑓(𝑣), then we have already taken
all the prerequisites for 𝑣 (i.e., its in-neighbors) in
prior semesters.

We start with the following definition. A layering of a directed
graph is a way to assign for every vertex 𝑣 a natural number
(corresponding to its layer), such that 𝑣’s in-neighbors are in
lower-numbered layers than 𝑣, and 𝑣’s out-neighbors are in
higher-numbered layers. The formal definition is as follows:

Definition 1.21 — Layering of a DAG. Let 𝐺 = (𝑉 , 𝐸) be a directed graph.
A layering of 𝐺 is a function 𝑓 ∶ 𝑉 → ℕ such that for every edge
𝑢 → 𝑣 of 𝐺, 𝑓(𝑢) < 𝑓(𝑣).

In this section we prove that a directed graph is acyclic if and only if
it has a valid layering.

Theorem 1.22 — Topological Sort. Let 𝐺 be a directed graph. Then 𝐺 is
acyclic if and only if there exists a layering 𝑓 of 𝐺.

To prove such a theorem, we need to first understand what it
means. Since it is an “if and only if” statement, Theorem 1.22 corre-
sponds to two statements:

https://goo.gl/QUskBc

70 introduction to theoretical computer science

Figure 1.9: Some examples of DAGs of one, two and
three vertices, and valid ways to assign layers to the
vertices.

Lemma 1.23 For every directed graph 𝐺, if 𝐺 is acyclic then it has a
layering.

Lemma 1.24 For every directed graph 𝐺, if 𝐺 has a layering, then it is
acyclic.

To prove Theorem 1.22 we need to prove both Lemma 1.23 and
Lemma 1.24. Lemma 1.24 is actually not that hard to prove. Intuitively,
if 𝐺 contains a cycle, then it cannot be the case that all edges on the
cycle increase in layer number, since if we travel along the cycle at
some point we must come back to the place we started from. The
formal proof is as follows:

Proof. Let 𝐺 = (𝑉 , 𝐸) be a directed graph and let 𝑓 ∶ 𝑉 → ℕ be a
layering of 𝐺 as per Definition 1.21 . Suppose, towards a contradiction,
that 𝐺 is not acyclic, and hence there exists some cycle 𝑢0, 𝑢1, … , 𝑢𝑘
such that 𝑢0 = 𝑢𝑘 and for every 𝑖 ∈ [𝑘] the edge 𝑢𝑖 → 𝑢𝑖+1 is present in
𝐺. Since 𝑓 is a layering, for every 𝑖 ∈ [𝑘], 𝑓(𝑢𝑖) < 𝑓(𝑢𝑖+1), which means
that

𝑓(𝑢0) < 𝑓(𝑢1) < ⋯ < 𝑓(𝑢𝑘) (1.19)

but this is a contradiction since 𝑢0 = 𝑢𝑘 and hence 𝑓(𝑢0) = 𝑓(𝑢𝑘).
�

Lemma 1.23 corresponds to the more difficult (and useful) direc-
tion. To prove it, we need to show how given an arbitrary DAG 𝐺, we
can come up with a layering of the vertices of 𝐺 so that all edges “go
up”.

P
If you have not seen the proof of this theorem before
(or don’t remember it), this would be an excellent
point to pause and try to prove it yourself. One way
to do it would be to describe an algorithm that given as
input a directed acyclic graph 𝐺 on 𝑛 vertices and 𝑛−2
or fewer edges, constructs an array 𝐹 of length 𝑛 such
that for every edge 𝑢 → 𝑣 in the graph 𝐹[𝑢] < 𝐹 [𝑣].

1.6.1 Mathematical induction
There are several ways to prove Lemma 1.23. One approach to do is
to start by proving it for small graphs, such as graphs with 1, 2 or 3
vertices (see Fig. 1.9, for which we can check all the cases, and then try
to extend the proof for larger graphs. The technical term for this proof
approach is proof by induction.

Induction is simply an application of the self-evident Modus Ponens
rule that says that if

https://en.wikipedia.org/wiki/Modus_ponens
https://en.wikipedia.org/wiki/Modus_ponens

mathematical background 71

(a) 𝑃 is true
and

(b) 𝑃 implies 𝑄
then 𝑄 is true.
In the setting of proofs by induction we typically have a statement

𝑄(𝑘) that is parameterized by some integer 𝑘, and we prove that (a)
𝑄(0) is true, and (b) For every 𝑘 > 0, if 𝑄(0), … , 𝑄(𝑘 − 1) are all true
then 𝑄(𝑘) is true. (Usually proving (b) is the hard part, though there
are examples where the “base case” (a) is quite subtle.) By applying
Modus Ponens, we can deduce from (a) and (b) that 𝑄(1) is true.
Once we did so, since we now know that both 𝑄(0) and 𝑄(1) are true,
then we can use this and (b) to deduce (again using Modus Ponens)
that 𝑄(2) is true. We can repeat the same reasoning again and again
to obtain that 𝑄(𝑘) is true for every 𝑘. The statement (a) is called the
“base case”, while (b) is called the “inductive step”. The assumption
in (b) that 𝑄(𝑖) holds for 𝑖 < 𝑘 is called the “inductive hypothesis”.
(The form of induction described here is sometimes called “strong
induction” as opposed to “weak induction” where we replace (b)
by the statement (b’) that if 𝑄(𝑘 − 1) is true then 𝑄(𝑘) is true; weak
induction can be thought of as the special case of strong induction
where we don’t use the assumption that 𝑄(0), … , 𝑄(𝑘 − 2) are true.)

R
Remark 1.25 — Induction and recursion. Proofs by in-
ductions are closely related to algorithms by recursion.
In both cases we reduce solving a larger problem to
solving a smaller instance of itself. In a recursive algo-
rithm to solve some problem P on an input of length
𝑘 we ask ourselves “what if someone handed me a
way to solve P on instances smaller than 𝑘?”. In an
inductive proof to prove a statement Q parameterized
by a number 𝑘, we ask ourselves “what if I already
knew that 𝑄(𝑘′) is true for 𝑘′ < 𝑘?”. Both induction
and recursion are crucial concepts for this course and
Computer Science at large (and even other areas of
inquiry, including not just mathematics but other
sciences as well). Both can be confusing at first, but
with time and practice they become clearer. For more
on proofs by induction and recursion, you might find
the following Stanford CS 103 handout, this MIT 6.00
lecture or this excerpt of the Lehman-Leighton book
useful.

1.6.2 Proving the result by induction
There are several ways to use induction to prove Lemma 1.23 by in-
duction. We will use induction on the number 𝑛 of vertices, and so we
will define the statement 𝑄(𝑛) as follows:

https://cs121.boazbarak.org/StanfordCS103Induction.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-6-recursion/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00sc-introduction-to-computer-science-and-programming-spring-2011/unit-1/lecture-6-recursion/
https://cs121.boazbarak.org/LL_induction.pdf

72 introduction to theoretical computer science

5 QED stands for “quod erat demonstrandum”, which
is Latin for “what was to be demonstrated” or “the
very thing it was required to have shown”.

6 Using 𝑛 = 0 as the base case is logically valid, but
can be confusing. If you find the trivial 𝑛 = 0 case
to be confusing, you can always directly verify the
statement for 𝑛 = 1 and then use both 𝑛 = 0 and
𝑛 = 1 as the base cases.

𝑄(𝑛) is “For every DAG 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices,
there is a layering of 𝐺.”

The statement for 𝑄(0) (where the graph contains no vertices) is
trivial. Thus it will suffice to prove the following: for every 𝑛 > 0, if
𝑄(𝑛 − 1) is true then 𝑄(𝑛) is true.

To do so, we need to somehow find a way, given a graph 𝐺 of 𝑛
vertices, to reduce the task of finding a layering for 𝐺 into the task of
finding a layering for some other graph 𝐺′ of 𝑛−1 vertices. The idea is
that we will find a source of 𝐺: a vertex 𝑣 that has no in-neighbors. We
can then assign to 𝑣 the layer 0, and layer the remaining vertices using
the inductive hypothesis in layers 1, 2, ….

The above is the intuition behind the proof of Lemma 1.23, but
when writing the formal proof below, we use the benefit of hind-
sight, and try to streamline what was a messy journey into a linear
and easy-to-follow flow of logic that starts with the word “Proof:”
and ends with “QED” or the symbol �.5 Discussions, examples and
digressions can be very insightful, but we keep them outside the space
delimited between these two words, where (as described by this ex-
cellent handout) “every sentence must be load bearing”. Just like we
do in programming, we can break the proof into little “subroutines”
or “functions” (known as lemmas or claims in math language), which
will be smaller statements that help us prove the main result. How-
ever, the proof should be structured in a way that ensures that it is
always crystal-clear to the reader in what stage we are of the proof.
The reader should be able to tell what is the role of every sentence in
the proof and which part it belongs to. We now present the formal
proof of Lemma 1.23.

Proof of Lemma 1.23. Let 𝐺 = (𝑉 , 𝐸) be a DAG and 𝑛 = |𝑉 | be the
number of its vertices. We prove the lemma by induction on 𝑛. The
base case is 𝑛 = 0 where there are no vertices, and so the statement is
trivially true.6 For the case of 𝑛 > 0, we make the inductive hypothesis
that every DAG 𝐺′ of at most 𝑛 − 1 vertices has a layering.

We make the following claim:
Claim: 𝐺 must contain a vertex 𝑣 of in-degree zero.
Proof of Claim: Suppose otherwise that every vertex 𝑣 ∈ 𝑉 has an

in-neighbor. Let 𝑣0 be some vertex of 𝐺, let 𝑣1 be an in-neighbor of 𝑣0,
𝑣2 be an in-neighbor of 𝑣1, and continue in this way for 𝑛 steps until
we construct a list 𝑣0, 𝑣1, … , 𝑣𝑛 such that for every 𝑖 ∈ [𝑛], 𝑣𝑖+1 is an
in-neighbor of 𝑣𝑖, or in other words the edge 𝑣𝑖+1 → 𝑣𝑖 is present in the
graph. Since there are only 𝑛 vertices in this graph, one of the 𝑛 + 1
vertices in this sequence must repeat itself, and so there exists 𝑖 < 𝑗
such that 𝑣𝑖 = 𝑣𝑗. But then the sequence 𝑣𝑗 → 𝑣𝑗−1 → ⋯ → 𝑣𝑖 is a cycle
in 𝐺, contradicting our assumption that it is acyclic. (QED Claim)

http://web.stanford.edu/class/cs103/handouts/120%20Proofwriting%20Checklist.pdf
http://web.stanford.edu/class/cs103/handouts/120%20Proofwriting%20Checklist.pdf

mathematical background 73

Given the claim, we can let 𝑣0 be some vertex of in-degree zero in
𝐺, and let 𝐺′ be the graph obtained by removing 𝑣0 from 𝐺. 𝐺′ has
𝑛 − 1 vertices and hence per the inductive hypothesis has a layering
𝑓 ′ ∶ (𝑉 ⧵ {𝑣0}) → ℕ. We define 𝑓 ∶ 𝑉 → ℕ as follows:

𝑓(𝑣) =
⎧{
⎨{⎩

𝑓 ′(𝑣) + 1 𝑣 ≠ 𝑣0

0 𝑣 = 𝑣0
. (1.20)

We claim that 𝑓 is a valid layering, namely that for every edge 𝑢 →
𝑣, 𝑓(𝑢) < 𝑓(𝑣). To prove this, we split into cases:

• Case 1: 𝑢 ≠ 𝑣0, 𝑣 ≠ 𝑣0. In this case the edge 𝑢 → 𝑣 exists in the
graph 𝐺′ and hence by the inductive hypothesis 𝑓 ′(𝑢) < 𝑓 ′(𝑣)
which implies that 𝑓 ′(𝑢) + 1 < 𝑓 ′(𝑣) + 1.

• Case 2: 𝑢 = 𝑣0, 𝑣 ≠ 𝑣0. In this case 𝑓(𝑢) = 0 and 𝑓(𝑣) = 𝑓 ′(𝑣) + 1 >
0.

• Case 3: 𝑢 ≠ 𝑣0, 𝑣 = 𝑣0. This case can’t happen since 𝑣0 does not
have in-neighbors.

• Case 4: 𝑢 = 𝑣0, 𝑣 = 𝑣0. This case again can’t happen since it means
that 𝑣0 is its own-neighbor — it is involved in a self loop which is a
form cycle that is disallowed in an acyclic graph.

Thus, 𝑓 is a valid layering for 𝐺 which completes the proof.
�

P
Reading a proof is no less of an important skill than
producing one. In fact, just like understanding code,
it is a highly non-trivial skill in itself. Therefore I
strongly suggest that you re-read the above proof, ask-
ing yourself at every sentence whether the assumption
it makes are justified, and whether this sentence truly
demonstrates what it purports to achieve. Another
good habit is to ask yourself when reading a proof for
every variable you encounter (such as 𝑢, 𝑖, 𝐺′, 𝑓 ′, etc.
in the above proof) the following questions: (1) What
type of variable is it? is it a number? a graph? a vertex?
a function? and (2) What do we know about it? Is it
an arbitrary member of the set? Have we shown some
facts about it?, and (3) What are we trying to show
about it?.

1.6.3 Minimality and uniqueness
Theorem 1.22 guarantees that for every DAG 𝐺 = (𝑉 , 𝐸) there exists
some layering 𝑓 ∶ 𝑉 → ℕ but this layering is not necessarily unique.

74 introduction to theoretical computer science

For example, if 𝑓 ∶ 𝑉 → ℕ is a valid layering of the graph then so is
the function 𝑓 ′ defined as 𝑓 ′(𝑣) = 2 ⋅ 𝑓(𝑣). However, it turns out that
the minimal layering is unique. A minimal layering is one where every
vertex is given the smallest layer number possible. We now formally
define minimality and state the uniqueness theorem:

Theorem 1.26 — Minimal layering is unique. Let 𝐺 = (𝑉 , 𝐸) be a DAG. We
say that a layering 𝑓 ∶ 𝑉 → ℕ is minimal if for every vertex 𝑣 ∈ 𝑉 , if
𝑣 has no in-neighbors then 𝑓(𝑣) = 0 and if 𝑣 has in-neighbors then
there exists an in-neighbor 𝑢 of 𝑣 such that 𝑓(𝑢) = 𝑓(𝑣) − 1.

For every layering 𝑓, 𝑔 ∶ 𝑉 → ℕ of 𝐺, if both 𝑓 and 𝑔 are minimal
then 𝑓 = 𝑔.

The definition of minimality in Theorem 1.26 implies that for every
vertex 𝑣 ∈ 𝑉 , we cannot move it to a lower layer without making
the layering invalid. If 𝑣 is a source (i.e., has in-degree zero) then
a minimal layering 𝑓 must put it in layer 0, and for every other 𝑣, if
𝑓(𝑣) = 𝑖, then we cannot modify this to set 𝑓(𝑣) ≤ 𝑖 − 1 since there
is an-neighbor 𝑢 of 𝑣 satisfying 𝑓(𝑢) = 𝑖 − 1. What Theorem 1.26
says is that a minimal layering 𝑓 is unique in the sense that every other
minimal layering is equal to 𝑓 .

Proof Idea:

The idea is to prove the theorem by induction on the layers. If 𝑓 and
𝑔 are minimal then they must agree on the source vertices, since both
𝑓 and 𝑔 should assign these vertices to layer 0. We can then show that
if 𝑓 and 𝑔 agree up to layer 𝑖 − 1, then the minimality property implies
that they need to agree in layer 𝑖 as well. In the actual proof we use
a small trick to save on writing. Rather than proving the statement
that 𝑓 = 𝑔 (or in other words that 𝑓(𝑣) = 𝑔(𝑣) for every 𝑣 ∈ 𝑉),
we prove the weaker statement that 𝑓(𝑣) ≤ 𝑔(𝑣) for every 𝑣 ∈ 𝑉 .
(This is a weaker statement since the condition that 𝑓(𝑣) is lesser or
equal than to 𝑔(𝑣) is implied by the condition that 𝑓(𝑣) is equal to
𝑔(𝑣).) However, since 𝑓 and 𝑔 are just labels we give to two minimal
layerings, by simply changing the names “𝑓” and “𝑔” the same proof
also shows that 𝑔(𝑣) ≤ 𝑓(𝑣) for every 𝑣 ∈ 𝑉 and hence that 𝑓 = 𝑔.

⋆

Proof of Theorem 1.26. Let 𝐺 = (𝑉 , 𝐸) be a DAG and 𝑓, 𝑔 ∶ 𝑉 → ℕ be
two minimal valid layering of 𝐺. We will prove that for every 𝑣 ∈ 𝑉 ,
𝑓(𝑣) ≤ 𝑔(𝑣). Since we didn’t assume anything about 𝑓, 𝑔 except their
minimality, the same proof will imply that for every 𝑣 ∈ 𝑉 , 𝑔(𝑣) ≤ 𝑓(𝑣)
and hence that 𝑓(𝑣) = 𝑔(𝑣) for every 𝑣 ∈ 𝑉 , which is what we needed
to show.

mathematical background 75

We will prove that 𝑓(𝑣) ≤ 𝑔(𝑣) for every 𝑣 ∈ 𝑉 by induction on
𝑖 = 𝑓(𝑣). The case 𝑖 = 0 is immediate: since in this case 𝑓(𝑣) = 0,
𝑔(𝑣) must be at least 𝑓(𝑣). For the case 𝑖 > 0, by the minimality of 𝑓 ,
if 𝑓(𝑣) = 𝑖 then there must exist some in-neighbor 𝑢 of 𝑣 such that
𝑓(𝑢) = 𝑖 − 1. By the induction hypothesis we get that 𝑔(𝑢) ≥ 𝑖 − 1, and
since 𝑔 is a valid layering it must hold that 𝑔(𝑣) > 𝑔(𝑢) which means
that 𝑔(𝑣) ≥ 𝑖 = 𝑓(𝑣).

�

P
The proof of Theorem 1.26 is fully rigorous, but is
written in a somewhat terse manner. Make sure that
you read through it and understand why this is indeed
an airtight proof of the Theorem’s statement.

1.7 THIS BOOK: NOTATION AND CONVENTIONS

Most of the notation we use in this book is standard and is used in
most mathematical texts. The main points where we diverge are:

• We index the natural numbers ℕ starting with 0 (though many
other texts, especially in computer science, do the same).

• We also index the set [𝑛] starting with 0, and hence define it as
{0, … , 𝑛−1}. In other texts it is often defined as {1, … , 𝑛}. Similarly,
we index our strings starting with 0, and hence a string 𝑥 ∈ {0, 1}𝑛

is written as 𝑥0𝑥1 ⋯ 𝑥𝑛−1.

• If 𝑛 is a natural number then 1𝑛 does not equal the number 1 but
rather this is the length 𝑛 string 11 ⋯ 1 (that is a string of 𝑛 ones).
Similarly, 0𝑛 refers to the length 𝑛 string 00 ⋯ 0.

• Partial functions are functions that are not necessarily defined on
all inputs. When we write 𝑓 ∶ 𝐴 → 𝐵 this means that 𝑓 is a total
function unless we say otherwise. When we want to emphasize that
𝑓 can be a partial function, we will sometimes write 𝑓 ∶ 𝐴 →𝑝 𝐵.

• As we will see later on in the course, we will mostly describe our
computational problems in the terms of computing a Boolean func-
tion 𝑓 ∶ {0, 1}∗ → {0, 1}. In contrast, many other textbooks refer to
the same task as deciding a language 𝐿 ⊆ {0, 1}∗. These two view-
points are equivalent, since for every set 𝐿 ⊆ {0, 1}∗ there is a
corresponding function 𝐹 such that 𝐹(𝑥) = 1 if and only if 𝑥 ∈ 𝐿.
Computing partial functions corresponds to the task known in the
literature as a solving a promise problem. Because the language nota-
tion is so prevalent in other textbooks, we will occasionally remind
the reader of this correspondence.

76 introduction to theoretical computer science

• We use ⌈𝑥⌉ and ⌊𝑥⌋ for the “ceiling” and “floor” operators that
correspond to “rounding up” or “rounding down” a number to the
nearest integer. We use (𝑥 mod 𝑦) to denote the “remainder” of 𝑥
when divided by 𝑦. That is, (𝑥 mod 𝑦) = 𝑥 − 𝑦⌊𝑥/𝑦⌋. In context
when an integer is expected we’ll typically “silently round” the
quantities to an integer. For example, if we say that 𝑥 is a string of
length √𝑛 then this means that 𝑥 is of length ⌈√𝑛 ⌉. (We round up
for the sake of convention, but in most such cases, it will not make a
difference whether we round up or down.)

• Like most Computer Science texts, we default to the logarithm in
base two. Thus, log𝑛 is the same as log2 𝑛.

• We will also use the notation 𝑓(𝑛) = 𝑝𝑜𝑙𝑦(𝑛) as a short hand for
𝑓(𝑛) = 𝑛𝑂(1) (i.e., as shorthand for saying that there are some
constants 𝑎, 𝑏 such that 𝑓(𝑛) ≤ 𝑎 ⋅ 𝑛𝑏 for every sufficiently large
𝑛). Similarly, we will use 𝑓(𝑛) = 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) as shorthand for
𝑓(𝑛) = 𝑝𝑜𝑙𝑦(log𝑛) (i.e., as shorthand for saying that there are
some constants 𝑎, 𝑏 such that 𝑓(𝑛) ≤ 𝑎 ⋅ (log𝑛)𝑏 for every sufficiently
large 𝑛).

• As in often the case in mathematical literature, we use the apostro-
phe character to enrich our set of identifiers. Typically if 𝑥 denotes
some object, then 𝑥′, 𝑥″, etc. will denote other objects of the same
type.

• To save on “cognitive load” we will often use round constants such
as 10, 100, 1000 in the statements of both theorems and problem
set questions. When you see such a “round” constant, you can
typically assume that it has no special significance and was just
chosen arbitrarily. For example, if you see a theorem of the form
“Algorithm 𝐴 takes at most 1000 ⋅ 𝑛2 steps to compute function 𝐹
on inputs of length 𝑛” then probably the number 1000 is an abitrary
sufficiently large constant, and one could prove the same theorem
with a bound of the form 𝑐 ⋅ 𝑛2 for a constant 𝑐 that is smaller than
1000. Similarly, if a problem asks you to prove that some quantity is
at least 𝑛/100, it is quite possible that in truth the quantity is at least
𝑛/𝑑 for some constant 𝑑 that is smaller than 100.

1.7.1 Variable name conventions
Like programming, mathematics is full of variables. Whenever you see
a variable, it is always important to keep track of what is its type (e.g.,
whether the variable is a number, a string, a function, a graph, etc.).
To make this easier, we try to stick to certain conventions and consis-
tently use certain identifiers for variables of the same type. Some of
these conventions are listed in Section 1.7.1 below. These conventions

mathematical background 77

are not immutable laws and we might occasionally deviate from them.
Also, such conventions do not replace the need to explicitly declare for
each new variable the type of object that it denotes.

Table 1.2: Conventions for identifiers in this book

Identifier Often denotes object of type

𝑖,𝑗,𝑘,ℓ,𝑚,𝑛Natural numbers (i.e., in ℕ = {0, 1, 2, …})
𝜖, 𝛿 Small positive real numbers (very close to 0)
𝑥, 𝑦, 𝑧, 𝑤 Typically strings in {0, 1}∗ though sometimes numbers or

other objects. We often identify an object with its
representation as a string.

𝐺 A graph. The set of 𝐺’s vertices is typically denoted by 𝑉 .
Often 𝑉 = [𝑛]. The set of 𝐺’s edges is typically denoted by
𝐸.

𝑆 Set
𝑓, 𝑔, ℎ Functions. We often (though not always) use lowercase

identifiers for finite functions, which map {0, 1}𝑛 to {0, 1}𝑚

(often 𝑚 = 1).
𝐹, 𝐺, 𝐻 Infinite (unbounded input) functions mapping {0, 1}∗ to

{0, 1}∗ or {0, 1}∗ to {0, 1}𝑚 for some 𝑚. Based on context,
the identifiers 𝐺, 𝐻 are sometimes used to denote
functions and sometimes graphs.

𝐴, 𝐵, 𝐶 Boolean circuits
𝑀, 𝑁 Turing machines
𝑃 , 𝑄 Programs
𝑇 A function mapping ℕ to ℕ that corresponds to a time

bound.
𝑐 A positive number (often an unspecified constant; e.g.,

𝑇 (𝑛) = 𝑂(𝑛) corresponds to the existence of 𝑐 s.t.
𝑇 (𝑛) ≤ 𝑐 ⋅ 𝑛 every 𝑛 > 0). We sometimes use 𝑎, 𝑏 in a
similar way.

Σ Finite set (often used as the alphabet for a set of strings).

1.7.2 Some idioms
Mathematical texts often employ certain conventions or “idioms”.
Some examples of such idioms that we use in this text include the
following:

• “Let 𝑋 be …”, “let 𝑋 denote …”, or “let 𝑋 = …”: These are all
different ways for us to say that we are defining the symbol 𝑋 to
stand for whatever expression is in the …. When 𝑋 is a property of
some objects we might define 𝑋 by writing something along the

78 introduction to theoretical computer science

lines of “We say that … has the property 𝑋 if ….”. While we often
try to define terms before they are used, sometimes a mathematical
sentence reads easier if we use a term before defining it, in which
case we add “Where 𝑋 is …” to explain how 𝑋 is defined in the
preceding expression.

• Quantifiers: Mathematical texts involve many quantifiers such as
“for all” and “exists”. We sometimes spell these in words as in “for
all 𝑖 ∈ ℕ” or “there is 𝑥 ∈ {0, 1}∗”, and sometimes use the formal
symbols ∀ and ∃. It is important to keep track on which variable is
quantified in what way the dependencies between the variables. For
example, a sentence fragment such as “for every 𝑘 > 0 there exists
𝑛” means that 𝑛 can be chosen in a way that depends on 𝑘. The order
of quantifiers is important. For example, the following is a true
statement: “for every natural number 𝑘 > 1 there exists a prime number
𝑛 such that 𝑛 divides 𝑘.” In contrast, the following statement is false:
“there exists a prime number 𝑛 such that for every natural number 𝑘 > 1,
𝑛 divides 𝑘.”

• Numbered equations, theorems, definitions: To keep track of all
the terms we define and statements we prove, we often assign them
a (typically numeric) label, and then refer back to them in other
parts of the text.

• (i.e.,), (e.g.,): Mathematical texts tend to contain quite a few of
these expressions. We use 𝑋 (i.e., 𝑌) in cases where 𝑌 is equivalent
to 𝑋 and 𝑋 (e.g., 𝑌) in cases where 𝑌 is an example of 𝑋 (e.g., one
can use phrases such as “a natural number (i.e., a non-negative
integer)” or “a natural number (e.g., 7)”).

• “Thus”, “Therefore” , “We get that”: This means that the following
sentence is implied by the preceding one, as in “The 𝑛-vertex graph
𝐺 is connected. Therefore it contains at least 𝑛 − 1 edges.” We
sometimes use “indeed” to indicate that the following text justifies
the claim that was made in the preceding sentence as in “The 𝑛-
vertex graph 𝐺 has at least 𝑛 − 1 edges. Indeed, this follows since 𝐺 is
connected.”

• Constants: In Computer Science, we typically care about how our
algorithms’ resource consumption (such as running time) scales
with certain quantities (such as the length of the input). We refer to
quantities that do not depend on the length of the input as constants
and so often use statements such as “there exists a constant 𝑐 > 0 such
that for every 𝑛 ∈ ℕ, Algorithm 𝐴 runs in at most 𝑐 ⋅ 𝑛2 steps on inputs of
length 𝑛.” The qualifier “constant” for 𝑐 is not strictly needed but is
added to emphasize that 𝑐 here is a fixed number independent of 𝑛.

mathematical background 79

In fact sometimes, to reduce cognitive load, we will simply replace 𝑐
by a sufficiently large round number such as 10, 100, or 1000, or use
𝑂-notation and write “Algorithm 𝐴 runs in 𝑂(𝑛2) time.”

✓ Lecture Recap

• The basic “mathematical data structures” we’ll
need are numbers, sets, tuples, strings, graphs and
functions.

• We can use basic objects to define more complex
notions. For example, graphs can be defined as a list
of pairs.

• Given precise definitions of objects, we can state
unambiguous and precise statements. We can then
use mathematical proofs to determine whether these
statements are true or false.

• A mathematical proof is not a formal ritual but
rather a clear, precise and “bulletproof” argument
certifying the truth of a certain statement.

• Big-𝑂 notation is an extremely useful formalism
to suppress less significant details and allow us to
focus on the high level behavior of quantities of
interest.

• The only way to get comfortable with mathematical
notions is to apply them in the contexts of solving
problems. You should expect to need to go back
time and again to the definitions and notation in
this chapter as you work through problems in this
course.

1.8 EXERCISES

Exercise 1.1 — Logical expressions. a. Write a logical expression 𝜑(𝑥)
involving the variables 𝑥0, 𝑥1, 𝑥2 and the operators ∧ (AND), ∨
(OR), and ¬ (NOT), such that 𝜑(𝑥) is true if the majority of the
inputs are True.

b. Write a logical expression 𝜑(𝑥) involving the variables 𝑥0, 𝑥1, 𝑥2
and the operators ∧ (AND), ∨ (OR), and ¬ (NOT), such that 𝜑(𝑥)
is true if the sum ∑2

𝑖=0 𝑥𝑖 (identifying “true” with 1 and “false”
with 0) is odd.

�

Exercise 1.2 — Quantifiers. Use the logical quantifiers ∀ (for all), ∃ (there
exists), as well as ∧, ∨, ¬ and the arithmetic operations +, ×, =, >, < to
write the following:

a. An expression 𝜑(𝑛, 𝑘) such that for every natural numbers 𝑛, 𝑘,
𝜑(𝑛, 𝑘) is true if and only if 𝑘 divides 𝑛.

80 introduction to theoretical computer science

b. An expression 𝜑(𝑛) such that for every natural number 𝑛, 𝜑(𝑛) is
true if and only if 𝑛 is a power of three.

�

Exercise 1.3 Describe the following statement in English words:
∀𝑛∈ℕ∃𝑝>𝑛∀𝑎, 𝑏 ∈ ℕ(𝑎 × 𝑏 ≠ 𝑝) ∨ (𝑎 = 1).

�

Exercise 1.4 — Set construction notation. Describe in words the following
sets:

a. 𝑆 = {𝑥 ∈ {0, 1}100 ∶ ∀𝑖∈{0,…,99}𝑥𝑖 = 𝑥99−𝑖}

b. 𝑇 = {𝑥 ∈ {0, 1}∗ ∶ ∀𝑖,𝑗∈{2,…,|𝑥|−1}𝑖 ⋅ 𝑗 ≠ |𝑥|}

�

Exercise 1.5 — Existence of one to one mappings. For each one of the fol-
lowing pairs of sets (𝑆, 𝑇), prove or disprove the following statement:
there is a one to one function 𝑓 mapping 𝑆 to 𝑇 .

a. Let 𝑛 > 10. 𝑆 = {0, 1}𝑛 and 𝑇 = [𝑛] × [𝑛] × [𝑛].

b. Let 𝑛 > 10. 𝑆 is the set of all functions mapping {0, 1}𝑛 to {0, 1}.
𝑇 = {0, 1}𝑛3 .

c. Let 𝑛 > 100. 𝑆 = {𝑘 ∈ [𝑛] | 𝑘 is prime}, 𝑇 = {0, 1}⌈log𝑛−1⌉.

�

Exercise 1.6 — Inclusion Exclusion. a. Let 𝐴, 𝐵 be finite sets. Prove that
|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|.

b. Let 𝐴0, … , 𝐴𝑘−1 be finite sets. Prove that |𝐴0 ∪ ⋯ ∪ 𝐴𝑘−1| ≥
∑𝑘−1

𝑖=0 |𝐴𝑖| − ∑0≤𝑖<𝑗<𝑘 |𝐴𝑖 ∩ 𝐴𝑗|.

c. Let 𝐴0, … , 𝐴𝑘−1 be finite subsets of {1, … , 𝑛}, such that |𝐴𝑖| = 𝑚 for
every 𝑖 ∈ [𝑘]. Prove that if 𝑘 > 100𝑛, then there exist two distinct
sets 𝐴𝑖, 𝐴𝑗 s.t. |𝐴𝑖 ∩ 𝐴𝑗| ≥ 𝑚2/(10𝑛).

�

Exercise 1.7 Prove that if 𝑆, 𝑇 are finite and 𝐹 ∶ 𝑆 → 𝑇 is one to one
then |𝑆| ≤ |𝑇 |.

�

Exercise 1.8 Prove that if 𝑆, 𝑇 are finite and 𝐹 ∶ 𝑆 → 𝑇 is onto then
|𝑆| ≥ |𝑇 |.

�

Exercise 1.9 Prove that for every finite 𝑆, 𝑇 , there are (|𝑇 | + 1)|𝑆| partial
functions from 𝑆 to 𝑇 .

�

mathematical background 81

7 Hint: one way to do this is to use Stirling’s approxi-
mation for the factorial function..

Exercise 1.10 Suppose that {𝑆𝑛}𝑛∈ℕ is a sequence such that 𝑆0 ≤ 10 and
for 𝑛 > 1 𝑆𝑛 ≤ 5𝑆⌊ 𝑛

5 ⌋ + 2𝑛. Prove by induction that 𝑆𝑛 ≤ 100𝑛 log𝑛 for
every 𝑛.

�

Exercise 1.11 Prove that for every undirected graph 𝐺 of 100 vertices, if
every vertex has degree at most 4, then there exists a subset 𝑆 of at 20
vertices such that no two vertices in 𝑆 are neighbors of one another.

�

Exercise 1.12 — 𝑂-notation. For every pair of functions 𝐹, 𝐺 below, deter-
mine which of the following relations holds: 𝐹 = 𝑂(𝐺), 𝐹 = Ω(𝐺),
𝐹 = 𝑜(𝐺) or 𝐹 = 𝜔(𝐺).

a. 𝐹(𝑛) = 𝑛, 𝐺(𝑛) = 100𝑛.

b. 𝐹(𝑛) = 𝑛, 𝐺(𝑛) = √𝑛.

c. 𝐹(𝑛) = 𝑛 log𝑛, 𝐺(𝑛) = 2(log(𝑛))2 .

d. 𝐹(𝑛) = √𝑛, 𝐺(𝑛) = 2√log𝑛

e. 𝐹(𝑛) = (𝑛
⌈0.2𝑛⌉) , 𝐺(𝑛) = 20.1𝑛 (where (𝑛

𝑘) is the number of 𝑘-sized
subsets of a set of size 𝑛) and 𝑔(𝑛) = 20.1𝑛.7

�

Exercise 1.13 Give an example of a pair of functions 𝐹, 𝐺 ∶ ℕ → ℕ such
that neither 𝐹 = 𝑂(𝐺) nor 𝐺 = 𝑂(𝐹) holds.

�

Exercise 1.14 Prove that for every undirected graph 𝐺 on 𝑛 vertices, if 𝐺
has at least 𝑛 edges then 𝐺 contains a cycle.

�

Exercise 1.15 Prove that for every undirected graph 𝐺 of 1000 vertices,
if every vertex has degree at most 4, then there exists a subset 𝑆 of at
least 200 vertices such that no two vertices in 𝑆 are neighbors of one
another.

�

1.9 BIBLIOGRAPHICAL NOTES

The heading “A Mathematician’s Apology”, refers to Hardy’s classic
book [Har41]. Even when Hardy is wrong, he is very much worth
reading.

There are many online sources for the mathematical background
needed for this book. In particular, the lecture notes for MIT 6.042
“Mathematics for Computer Science” [LLM18] are extremely com-
prehensive, and videos and assignments for this course are available

https://goo.gl/cqEmS2
https://goo.gl/cqEmS2

82 introduction to theoretical computer science

online. Similarly, Berkeley CS 70: “Discrete Mathematics and Proba-
bility Theory” has extensive lecture notes online.

Other sources for discrete mathematics are Rosen [Ros19] and
Jim Aspens’ online book [Asp18]. Lewis and Zax [LZ19], as well
as the online book of Fleck [Fle18], give a more gentle overview of
the much of the same material. Solow [Sol14] is a good introduction
to proof reading and writing. Kun [Kun18] gives an introduction
to mathematics aimed at readers with programming background.
Stanford’s CS 103 course has a wonderful collections of handouts on
mathematical proof techniques and discrete mathematics.

The word graph in the sense of Definition 1.3 was coined by the
mathematician Sylvester in 1878 in analogy with the chemical graphs
used to visualize molecules. There is an unfortunate confusion be-
tween this term and the more common usage of the word “graph” as
a way to plot data, and in particular a plot of some function 𝑓(𝑥) as a
function of 𝑥. One way to relate these two notions is to identify every
function 𝑓 ∶ 𝐴 → 𝐵 with the directed graph 𝐺𝑓 over the vertex set
𝑉 = 𝐴 ∪ 𝐵 such that 𝐺𝑓 contains the edge 𝑥 → 𝑓(𝑥) for every 𝑥 ∈ 𝐴. In
a graph 𝐺𝑓 constructed in this way, every vertex in 𝐴 has out-degree
equal to one. If the function 𝑓 is one to one then every vertex in 𝐵 has
in-degree at most one. If the function 𝑓 is onto then every vertex in 𝐵
has in-degree at least one. If 𝑓 is a bijection then every vertex in 𝐵 has
in-degree exactly equal to one.

Carl Pomerance’s quote is taken from the home page of Doron
Zeilberger.

http://www.eecs70.org/
http://www.eecs70.org/
https://cs103.stanford.edu
http://sites.math.rutgers.edu/~zeilberg/quotes.html
http://sites.math.rutgers.edu/~zeilberg/quotes.html

	Preliminaries
	Mathematical Background
	This chapter: a reader's manual
	A quick overview of mathematical prerequisites
	Reading mathematical texts
	Definitions
	Assertions: Theorems, lemmas, claims
	Proofs

	Basic discrete math objects
	Sets
	Special sets
	Functions
	Graphs
	Logic operators and quantifiers
	Quantifiers for summations and products
	Parsing formulas: bound and free variables
	Asymptotics and Big-O notation
	Some ``rules of thumb'' for Big-O notation

	Proofs
	Proofs and programs
	Proof writing style
	Patterns in proofs

	Extended example: Topological Sorting
	Mathematical induction
	Proving the result by induction
	Minimality and uniqueness

	This book: notation and conventions
	Variable name conventions
	Some idioms

	Exercises
	Bibliographical notes

