University of Virginia ¢s3120: Discrete Mathematics and Theory 2 4 April 2023

Notes on Turing Machines
Definition: A Turing Machine (TM) is a 3-tuple (X, k, 9):

1. 3 — afinite set (the alphabet), ¥ D {0, 1,1, 0}.

2. k € N — the states (we just represent each state with a natural number, instead of using an arbitrary set like we
did earlier with DFAs and NFAs)

3. 0: [k] x ¥ — [k] x ¥ x {L, R, S, H}. The transition function takes a state and an alphabet symbol (read from
the tape), and outputs a state, a symbol that is written on the tap, and either moves one square Left, moves one
square Right, Stays, or Halts.

Execution of a TM
Definition: The execution of a TM, M = (X, k,) on input x € {0, 1}* is the result of this process:

1. Initialize T as (>, 2o, 1, ..., Zp—1,0,0,0,...) where n = |z|.

2. Initialize two natural number variables, ¢ = 0 (which represents the tape index) and s = 0 (which represents
the current state).

3. Repeat until break is reached:

(a) (8,7 0/7 D) = 5(87 T[Z])

(b) s:=s', T'[i]:=0".

) ifD=R:i:=t+1
if D = L: i:=max{i — 1,0}
if D = H: break

4. If the process finishes (reaches the break to stop the repeat), the output is: M (xz) = T'[1],...,T[m] where
m > 0 is the smallest integer such that 7'[m + 1] ¢ {0, 1}. Otherwise (i.e., the machine does NOT halt),
M(z) = L.

No-Input Variation

The execution of a TM, M = (X, k, 0) eninputz-c<{0;1}* is the result of this process:

1. Initialize T as (>,2g7%5——%7=1 0,0, 0, . . .) where-n—=-=}. Initialize T as (>,0,0,0,...).

2. ... (the rest of the definition is the same as above)

¢s3120 Spring 2023 2 Notes on Turing Machines

Self-Rejecting Language

For many definitions, including this one, we need a function that turns an arbitrary finite binary string into a Turing
Machine (much of Turing’s paper is showing, in a somewhat tedious way, that you can turn a TM description into a
finite binary string, which now we are sufficiently comfortable with that we take this as obvious without needing to
go through the steps). The difficulty in the reverse direction is that while there are many ways to map finite binary
strings to TMs, none of them will be complete (that is, some finite binary strings will not correspond to a valid TM).
To address this, we define the M(w) : {0, 1}* — TuringMachine function that coverts an arbitrary binary string to
a TM. It works for any w € {0, 1}* but is defined to produce a special "reject everything" machine for inputs w that
do not correspond to valid Turing Machines:

M(TM described by w w corresponds to a valid Turing Machine
w) =
RejectMachine Otherwise

The self-rejecting language is defined as:

SelfRejecting = {w € {0,1}" | w ¢ L(M(w))

AD47 858569

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans

