
8
Universality and uncomputability

“A function of a variable quantity is an analytic expres-
sion composed in any way whatsoever of the variable
quantity and numbers or constant quantities.”, Leon-
hard Euler, 1748.

“The importance of the universal machine is clear. We do
not need to have an infinity of different machines doing
different jobs. … The engineering problem of producing
various machines for various jobs is replaced by the office
work of ‘programming’ the universal machine”, Alan
Turing, 1948

One of the most significant results we showed for Boolean circuits
(or equivalently, straight-line programs) is the notion of universality:
there is a single circuit that can evaluate all other circuits. However,
this result came with a significant caveat. To evaluate a circuit of 𝑠
gates, the universal circuit needed to use a number of gates larger
than 𝑠. It turns out that uniform models such as Turing machines or
NAND-TM programs allow us to “break out of this cycle” and obtain
a truly universal Turing machine 𝑈 that can evaluate all other machines,
including machines that are more complex (e.g., more states) than 𝑈
itself. (Similarly, there is a Universal NAND-TM program 𝑈 ′ that can
evaluate all NAND-TM programs, including programs that have more
lines than 𝑈 ′.)

It is no exaggeration to say that the existence of such a universal
program/machine underlies the information technology revolution
that began in the latter half of the 20th century (and is still ongoing).
Up to that point in history, people have produced various special-
purpose calculating devices such as the abacus, the slide ruler, and
machines that compute various trigonometric series. But as Turing
(who was perhaps the one to see most clearly the ramifications of
universality) observed, a general purpose computer is much more pow-
erful. Once we build a device that can compute the single universal

Compiled on 10.21.2019 15:50

Learning Objectives:
• The universal machine/program - “one

program to rule them all”
• A fundamental result in computer science and

mathematics: the existence of uncomputable
functions.

• The halting problem: the canonical example
for an uncomputable function.

• Introduction to the technique of reductions.
• Rice’s Theorem: A “meta tool” for

uncomputability results, and a starting point
for much of the research on compilers,
programming languages, and software
verification.

288 introduction to theoretical computer science

Figure 8.2: A Universal Turing Machine is a single
Turing Machine 𝑈 that can evaluate, given input the
(description as a string of) arbitrary Turing machine
𝑀 and input 𝑥, the output of 𝑀 on 𝑥. In contrast to
the universal circuit depicted in Fig. 5.6, the machine
𝑀 can be much more complex (e.g., more states or
tape alphabet symbols) than 𝑈 .

function, we have the ability, via software, to extend it to do arbitrary
computations. For example, if we want to simulate a new Turing ma-
chine 𝑀 , we do not need to build a new physical machine, but rather
can represent 𝑀 as a string (i.e., using code) and then input 𝑀 to the
universal machine 𝑈 .

Beyond the practical applications, the existence of a universal al-
gorithm also surprising theoretical ramification, and in particular can
be used to show the existence of uncomputable functions, upending the
intuitions of mathematicians over the centuries from Euler to Hilbert.
In this chapter we will prove the existence of the universal program,
and also show its implications for uncomputability, see Fig. 8.1

Figure 8.1: In this chapter we will show the existence
of a universal Turing machine and then use this to de-
rive first the existence of some uncomputable function.
We then use this to derive the uncomputability of
Turing’s famous “halting problem” (i.e., the HALT
function), from which we a host of other uncom-
putability results follow. We also introduce reductions,
which allow us to use the uncomputability of a
function 𝐹 to derive the uncomputability of a new
function 𝐺.

8.1 UNIVERSALITY OR A META-CIRCULAR EVALUATOR

We start by proving the existence of a universal Turing machine. This is
a single Turing machine 𝑈 that can evaluate arbitrary Turing machines
𝑀 on arbitrary inputs 𝑥, including machines 𝑀 that can have more
states and larger alphabet than 𝑈 itself. In particular, 𝑈 can even be
used to evaluate itself! This notion of self reference will appear time
and again in this course, and as we will see, leads to several counter-
intuitive phenomena in computing.

Theorem 8.1 — Universal Turing Machine. There exists a Turing machine
𝑈 such that on every string 𝑀 which represents a Turing machine,
and 𝑥 ∈ {0, 1}∗, 𝑈(𝑀, 𝑥) = 𝑀(𝑥).

That is, if the machine 𝑀 halts on 𝑥 and outputs some 𝑦 ∈
{0, 1}∗ then 𝑈(𝑀, 𝑥) = 𝑦, and if 𝑀 does not halt on 𝑥 (i.e.,
𝑀(𝑥) = ⊥) then 𝑈(𝑀, 𝑥) = ⊥.

universality and uncomputability 289

 Big Idea 10 There is a “universal” algorithm that can evaluate
arbitrary algorithms on arbitrary inputs.

Proof Idea:

Once you understand what the theorem says, it is not that hard to
prove. The desired program 𝑈 is an interpreter for Turing machines.
That is, 𝑈 gets a representation of the machine 𝑀 (think of it as source
code), and some input 𝑥, and needs to simulate the execution of 𝑀 on
𝑥.

Think of how you would code 𝑈 in your favorite programming
language. First, you would need to decide on some representation
scheme for 𝑀 . For example, you can use an array or a dictionary
to encode 𝑀 ’s transition function. Then you would use some data
structure, such as a list, to store the contents of 𝑀 ’s tape. Now you can
simulate 𝑀 step by step, updating the data structure as you go along.
The interpreter will continue the simulation until the machine halts.

Once you do that, translating this interpreter from your favorite
programming language to a Turing machine can be done just as we
have seen in Chapter 7. The end result is what’s known as a “meta-
circular evaluator”: an interpreter for a programming language in the
same one. This is a concept that has a long history in computer science
starting from the original universal Turing machine. See also Fig. 8.3.

⋆

8.1.1 Proving the existence of a universal Turing Machine
To prove (and even properly state) Theorem 8.1, we need fix some
representation for Turing machines as strings. For example, one poten-
tial choice for such a representation is to use the equivalence betwen
Turing machines and NAND-TM programs and hence represent a
Turing machine 𝑀 using the ASCII encoding of the source code of the
corresponding NAND-TM program 𝑃 . However, we will use a more
direct encoding.

Definition 8.2 — String representation of Turing Machine. Let 𝑀 be a Turing
machine with 𝑘 states and a size ℓ alphabet Σ = {𝜎0, … , 𝜎ℓ−1} (we
use the convention 𝜎0 = 0,𝜎1 = 1, 𝜎2 = ∅, 𝜎3 = ▷). We represent
𝑀 as the triple (𝑘, ℓ, 𝑇) where 𝑇 is the table of values for 𝛿𝑀 :

𝑇 = (𝛿𝑀(0, 0), 𝛿𝑀(0, 𝜎0), … , 𝛿𝑀(𝑘 − 1, 𝜎𝑘−1)) , (8.1)

where each value 𝛿𝑀(𝑠, 𝜎) is a triple (𝑠′, 𝜎′, 𝑑) with 𝑠′ ∈ [𝑘],
𝜎′ ∈ Σ and 𝑑 a number {0, 1, 2, 3} encoding one of {L, R, S, H}. Thus
such a machine 𝑀 is encoded by a list of 2 + 3𝑘 ⋅ ℓ natural num-

290 introduction to theoretical computer science

bers. The string representation of 𝑀 is obtained by concatenating
prefix free representation of all these integers. If a string 𝛼 ∈ {0, 1}∗

does not represent a list of integers in the form above, then we treat
it as representing the trivial Turing machine with one state that
immediately halts on every input.

R
Remark 8.3 — Take away points of representation. The
details of the representation scheme of Turing ma-
chines as strings are immaterial for almost all applica-
tions. What you need to remember are the following
points:

1. We can represent every Turing machine as a string.
2. Given the string representation of a Turing ma-

chine 𝑀 and an input 𝑥, we can simulate 𝑀 ’s
execution on the input 𝑥. (This is the contents of
??.)

An additional minor issue is that for convenience we
make the assumption that every string represents some
Turing machine. This is very easy to ensure by just
mapping strings that would otherwise not represent a
Turing machine into some fixed trivial machine. This
assumption is not very important, but does make a
few results (such as Rice’s Theorem: Theorem 8.16) a
little less cumbersome to state.

Using this representation, we can formally prove Theorem 8.1.

Proof of Theorem 8.1. We will only sketch the proof, giving the major
ideas. First, we observe that we can easily write a Python program
that, on input a representation (𝑘, ℓ, 𝑇) of a Turing machine 𝑀 and
an input 𝑥, evaluates 𝑀 on 𝑋. Here is the code of this program for
concreteness, though you can feel free to skip it if you are not familiar
with (or interested in) Python:

constants

def EVAL(δ,x):

'''Evaluate TM given by transition table δ

on input x'''

Tape = ["�"] + [a for a in x]

i = 0; s = 0 # i = head pos, s = state

while True:

s, Tape[i], d = δ[(s,Tape[i])]

if d == "H": break

if d == "L": i = max(i-1,0)

if d == "R": i += 1

universality and uncomputability 291

if i>= len(Tape): Tape.append('Φ')

j = 1; Y = [] # produce output

while Tape[j] != 'Φ':

Y.append(Tape[j])

j += 1

return Y

On input a transition table 𝛿 this program will simulate the cor-
responding machine 𝑀 step by step, at each point maintaining the
invariant that the array Tape contains the contents of 𝑀 ’s tape, and
the variable s contains 𝑀 ’s current state.

The above does not prove the theorem as stated, since we need
to show a Turing machine that computes EVAL rather than a Python
program. With enough effort, we can translate this Python code
line by line to a Turing machine. However, to prove the theorem we
don’t need to do this, but can use our “eat the cake and have it too”
paradigm. That is, while we need to evaluate a Turing machine, in
writing the code for the interpreter we are allowed to use a richer
model such as NAND-RAM since it is equivalent in power to Turing
machines per Theorem 7.1).

Translating the above Python code to NAND-RAM is truly straight-
forward. The only issue is that NAND-RAM doesn’t have the dictio-
nary data structure built in, which we have used above to store the
transition function δ. However, we can represent a dictionary 𝐷 of
the form {𝑘𝑒𝑦0 ∶ 𝑣𝑎𝑙0, … , 𝑘𝑒𝑦𝑚−1 ∶ 𝑣𝑎𝑙𝑚−1} as simply a list of pairs.
To compute 𝐷[𝑘] we can scan over all the pairs until we find one of
the form (𝑘, 𝑣) in which case we return 𝑣. Similarly we scan the list
to update the dictionary with a new value, either modifying it or ap-
pending the pair (𝑘𝑒𝑦, 𝑣𝑎𝑙) at the end.

�

R
Remark 8.4 — Efficiency of the simulation. The argu-
ment in the proof of Theorem 8.1 is a very inefficient
way to implement the dictionary data structure in
practice, but it suffices for the purpose of proving the
theorem. Reading and writing to a dictionary of 𝑚
values in this implementation takes Ω(𝑚) steps, but
it is in fact possible to do this in 𝑂(log𝑚) steps using
a search tree data structure or even 𝑂(1) (for “typical”
instances) using a hash table. NAND-RAM and RAM
machines correspond to the architecture of modern
electronic computers, and so we can implement hash
tables and search trees in NAND-RAM just as they are
implemented in other programming languages.

292 introduction to theoretical computer science

R
Remark 8.5 — Direct construction of universal Turing
Machines. Since universal Turing

8.1.2 Implications of universality (discussion)

Figure 8.3: a) A particularly elegant example of a
“meta-circular evaluator” comes from John Mc-
Carthy’s 1960 paper, where he defined the Lisp
programming language and gave a Lisp function that
evaluates an arbitrary Lisp program (see above). Lisp
was not initially intended as a practical program-
ming language and this example was merely meant
as an illustration that the Lisp universal function is
more elegant than the universal Turing machine. It
was McCarthy’s graduate student Steve Russell who
suggested that it can be implemented. As McCarthy
later recalled, “I said to him, ho, ho, you’re confusing
theory with practice, this eval is intended for reading, not
for computing. But he went ahead and did it. That is, he
compiled the eval in my paper into IBM 704 machine code,
fixing a bug, and then advertised this as a Lisp interpreter,
which it certainly was”. b) A self-replicating C program
from the classic essay of Thompson [Tho84].

There is more than one Turing machine 𝑈 that satisfies the condi-
tions of Theorem 8.1, but the existence of even a single such machine
is already extremely fundamental to both the theory and practice of
computer science. Theorem 8.1’s impact reaches beyond the particu-
lar model of Turing machines. Because we can simulate every Turing
Machine by a NAND-TM program and vice versa, Theorem 8.1 im-
mediately implies there exists a universal NAND-TM program 𝑃𝑈
such that 𝑃𝑈(𝑃 , 𝑥) = 𝑃(𝑥) for every NAND-TM program 𝑃 . We can
also “mix and match” models. For example since we can simulate
every NAND-RAM program by a Turing machine, and every Turing
Machine by the 𝜆 calculus, Theorem 8.1 implies that there exists a 𝜆
expression 𝑒 such that for every NAND-RAM program 𝑃 and input 𝑥
on which 𝑃(𝑥) = 𝑦, if we encode (𝑃 , 𝑥) as a 𝜆-expression 𝑓 (using the
𝜆-calculus encoding of strings as lists of 0’s and 1’s) then (𝑒 𝑓) eval-
uates to an encoding of 𝑦. More generally we can say that for every
𝒳 and 𝒴 in the set { Turing Machines, RAM Machines, NAND-TM,
NAND-RAM, 𝜆-calculus, JavaScript, Python, … } of Turing equivalent
models, there exists a program/machine in 𝒳 that computes the map
(𝑃 , 𝑥) ↦ 𝑃(𝑥) for every program/machine 𝑃 ∈ 𝒴.

The idea of a “universal program” is of course not limited to theory.
For example compilers for programming languages are often used to
compile themselves, as well as programs more complicated than the

universality and uncomputability 293

compiler. (An extreme example of this is Fabrice Bellard’s Obfuscated
Tiny C Compiler which is a C program of 2048 bytes that can compile
a large subset of the C programming language, and in particular can
compile itself.) This is also related to the fact that it is possible to write
a program that can print its own source code, see Fig. 8.3. There are
universal Turing machines known that require a very small number
of states or alphabet symbols, and in particular there is a universal
Turing machine (with respect to a particular choice of representing
Turing machines as strings) whose tape alphabet is {▷,∅, 0, 1} and
has fewer than 25 states (see Section 8.7).

8.2 IS EVERY FUNCTION COMPUTABLE?

In Theorem 4.12, we saw that NAND-CIRC programs can compute
every finite function 𝑓 ∶ {0, 1}𝑛 → {0, 1}. Therefore a natural guess is
that NAND-TM programs (or equivalently, Turing Machines) could
compute every infinite function 𝐹 ∶ {0, 1}∗ → {0, 1}. However, this
turns out to be false. That is, there exists a function 𝐹 ∶ {0, 1}∗ → {0, 1}
that is uncomputable!

The existence of uncomputable functions is quite surprising. Our
intuitive notion of a “function” (and the notion most mathematicians
had until the 20th century) is that a function 𝑓 defines some implicit
or explicit way of computing the output 𝑓(𝑥) from the input 𝑥. The
notion of an “uncomputable function” thus seems to be a contradic-
tion in terms, but yet the following theorem shows that such creatures
do exist:

Theorem 8.6 — Uncomputable functions. There exists a function 𝐹 ∗ ∶
{0, 1}∗ → {0, 1} that is not computable by any Turing machine.

Proof Idea:

The idea behind the proof follows quite closely Cantor’s proof that
the reals are uncountable (Theorem 2.5), and in fact the theorem can
also be obtained fairly directly from that result (see Exercise 6.11).
However, it is instructive to see the direct proof. The idea is to con-
struct 𝐹 ∗ in a way that will ensure that every possible machine 𝑀 will
in fact fail to compute 𝐹 ∗. We do so by defining 𝐹 ∗(𝑥) to equal 0 if 𝑥
describes a Turing machine 𝑀 which satisfies 𝑀(𝑥) = 1 and defining
𝐹 ∗(𝑥) = 1 otherwise. By construction, if 𝑀 is any Turing machine and
𝑥 is the string describing it, then 𝐹 ∗(𝑥) ≠ 𝑀(𝑥) and therefore 𝑀 does
not compute 𝐹 ∗.

⋆

Proof of Theorem 8.6. The proof is illustrated in Fig. 8.4. We start by
defining the following function 𝐺 ∶ {0, 1}∗ → {0, 1}:

https://bellard.org/otcc/
https://bellard.org/otcc/

294 introduction to theoretical computer science

For every string 𝑥 ∈ {0, 1}∗, if 𝑥 satisfies (1) 𝑥 is a valid repre-
sentation of some Turing machine 𝑀 (per the representation scheme
above) and (2) when the program 𝑀 is executed on the input 𝑥 it
halts and produces an output, then we define 𝐺(𝑥) as the first bit of
this output. Otherwise (i.e., if 𝑥 is not a valid representation of a Tur-
ing machine, or the machine 𝑀𝑥 never halts on 𝑥) we define 𝐺(𝑥) = 0.
We define 𝐹 ∗(𝑥) = 1 − 𝐺(𝑥).

We claim that there is no Turing machine that computes 𝐹 ∗. In-
deed, suppose, towards the sake of contradiction, that exists a ma-
chine 𝑀 that computes 𝐹 ∗, and let 𝑥 be the binary string that rep-
resents the machine 𝑀 . On one hand, since by our assumption 𝑀
computes 𝐹 ∗, on input 𝑥 the machine 𝑀 halts and outputs 𝐹 ∗(𝑥). On
the other hand, by the definition of 𝐹 ∗, since 𝑥 is the representation
of the machine 𝑀 , 𝐹 ∗(𝑥) = 1 − 𝐺(𝑥) = 1 − 𝑀(𝑥), hence yielding a
contradiction.

�

Figure 8.4: We construct an uncomputable function
by defining for every two strings 𝑥, 𝑦 the value
1 − 𝑀𝑦(𝑥) which equals 0 if the machine described
by 𝑦 outputs 1 on 𝑥, and 1 otherwise. We then define
𝐹 ∗(𝑥) to be the “diagonal” of this table, namely
𝐹 ∗(𝑥) = 1 − 𝑀𝑥(𝑥) for every 𝑥. The function 𝐹 ∗

is uncomputable, because if it was computable by
some machine whose string description is 𝑥∗ then we
would get that 𝑀𝑥∗ (𝑥∗) = 𝐹(𝑥∗) = 1 − 𝑀𝑥∗ (𝑥∗).

 Big Idea 11 There are some functions that can not be computed by
any algorithm.

P
The proof of Theorem 8.6 is short but subtle. I suggest
that you pause here and go back to read it again and
think about it - this is a proof that is worth reading at
least twice if not three or four times. It is not often the
case that a few lines of mathematical reasoning estab-
lish a deeply profound fact - that there are problems
we simply cannot solve.

universality and uncomputability 295

The type of argument used to prove Theorem 8.6 is known as di-
agonalization since it can be described as defining a function based
on the diagonal entries of a table as in Fig. 8.4. The proof can be
thought of as an infinite version of the counting argument we used
for showing lower bound for NAND-CIRC progams in Theorem 5.3.
Namely, we show that it’s not possible to compute all functions from
{0, 1}∗ → {0, 1} by Turing machines simply because there are more
functions like that then there are Turing machines.

As mentioned in ??, many texts use the “language” terminology
and so will call a set 𝐿 ⊆ {0, 1}∗ an undecidable or non recursive lan-
guage if the function 𝐹 ∶ {0, 1}∗ ∶→ {0, 1} such that 𝐹(𝑥) = 1 ↔ 𝑥 ∈ 𝐿
is uncomputable.

8.3 THE HALTING PROBLEM

Theorem 8.6 shows that there is some function that cannot be com-
puted. But is this function the equivalent of the “tree that falls in the
forest with no one hearing it”? That is, perhaps it is a function that
no one actually wants to compute. It turns out that there are natural
uncomputable functions:

Theorem 8.7 — Uncomputability of Halting function. Let HALT ∶ {0, 1}∗ →
{0, 1} be the function such that for every string 𝑀 ∈ {0, 1}∗,
HALT(𝑀, 𝑥) = 1 if Turing machine 𝑀 halts on the input 𝑥 and
HALT(𝑀, 𝑥) = 0 otherwise. Then HALT is not computable.

Before turning to prove Theorem 8.7, we note that HALT is a very
natural function to want to compute. For example, one can think of
HALT as a special case of the task of managing an “App store”. That
is, given the code of some application, the gatekeeper for the store
needs to decide if this code is safe enough to allow in the store or not.
At a minimum, it seems that we should verify that the code would not
go into an infinite loop.

Proof Idea:

One way to think about this proof is as follows:

Uncomputability of 𝐹 ∗ + Universality = Uncomputability of HALT
(8.2)

That is, we will use the universal Turing machine that computes EVAL
to derive the uncomputability of HALT from the uncomputability of
𝐹 ∗ shown in Theorem 8.6. Specifically, the proof will be by contra-
diction. That is, we will assume towards a contradiction that HALT is
computable, and use that assumption, together with the universal Tur-
ing machine of Theorem 8.1, to derive that 𝐹 ∗ is computable, which
will contradict Theorem 8.6.

https://goo.gl/3YvQvL

296 introduction to theoretical computer science

⋆

 Big Idea 12 If a function 𝐹 is uncomputable we can show that
another function 𝐻 is uncomputable by giving a way to reduce the task
of computing 𝐹 to computing 𝐻 .

Proof of Theorem 8.7. The proof will use the previously established
result Theorem 8.6. Recall that Theorem 8.6 shows that the following
function 𝐹 ∗ ∶ {0, 1}∗ → {0, 1} is uncomputable:

𝐹 ∗(𝑥) =
⎧{
⎨{⎩

1 𝑥(𝑥) = 0
0 otherwise

(8.3)

where 𝑥(𝑥) denotes the output of the Turing machine described by the
string 𝑥 on the input 𝑥 (with the usual convention that 𝑥(𝑥) = ⊥ if this
computation does not halt).

We will show that the uncomputability of 𝐹 ∗ implies the uncom-
putability of HALT. Specifically, we will assume, towards a contra-
diction, that there exists a Turing machine 𝑀 that can compute the
HALT function, and use that to obtain a Turing machine 𝑀 ′ that com-
putes the function 𝐹 ∗. (This is known as a proof by reduction, since we
reduce the task of computing 𝐹 ∗ to the task of computing HALT. By
the contrapositive, this means the uncomputability of 𝐹 ∗ implies the
uncomputability of HALT.)

Indeed, suppose that 𝑀 is a Turing machine that computes HALT.
Algorithm 8.8 describes a Turing Machine 𝑀 ′ that computes 𝐹 ∗. (We
use “high level” description of Turing machines, appealing to the
“have your cake and eat it too” paradigm, see Big Idea 9.)

Algorithm 8.8 — 𝐹 ∗ to 𝐻𝐴𝐿𝑇 reduction.

Input: 𝑥 ∈ {0, 1}∗

Output: 𝐹 ∗(𝑥)
1: # Assume T.M. 𝑀𝐻𝐴𝐿𝑇 computes 𝐻𝐴𝐿𝑇
2: Let 𝑧 ← 𝑀𝐻𝐴𝐿𝑇 (𝑥, 𝑥). # Assume 𝑧 = 𝐻𝐴𝐿𝑇 (𝑥, 𝑥).
3: if 𝑧 = 0 then
4: return 0
5: end if
6: Let 𝑦 ← 𝑈(𝑥, 𝑥) # 𝑈 universal TM, i.e., 𝑦 = 𝑥(𝑥)
7: if 𝑦 = 0 then
8: return 1
9: end if

10: return 0

universality and uncomputability 297

We claim that Algorithm 8.8 computes the function 𝐹 ∗. In-
deed, suppose that 𝑥(𝑥) = 0 (and hence 𝐹 ∗(𝑥) = 1). In this
case, HALT(𝑥, 𝑥) = 1 and hence, under our assumption that
𝑀(𝑥, 𝑥) = HALT(𝑥, 𝑥), the value 𝑧 will equal 1, and hence Al-
gorithm 8.8 will set 𝑦 = 𝑥(𝑥) = 0, and output the correct value
1.

Suppose otherwise that 𝑥(𝑥) ≠ 0 (and hence 𝐹 ∗(𝑥) = 0). In this
case there are two possibilities:

• Case 1: The machine described by 𝑥 does not halt on the input 𝑥.
In this case, HALT(𝑥, 𝑥) = 0. Since we assume that 𝑀 computes
HALT it means that on input 𝑥, 𝑥, the machine 𝑀 must halt and
output the value 0. This means that Algorithm 8.8 will set 𝑧 = 0
and output 0.

• Case 2: The machine described by 𝑥 halts on the input 𝑥 and out-
puts some 𝑦′ ≠ 0. In this case, since HALT(𝑥, 𝑥) = 1, under our
assumptions, Algorithm 8.8 will set 𝑦 = 𝑦′ ≠ 0 and so output 0.

We see that in all cases, 𝑀 ′(𝑥) = 𝐹 ∗(𝑥), which contradicts the
fact that 𝐹 ∗ is uncomputable. Hence we reach a contradiction to our
original assumption that 𝑀 computes HALT.

�

P
Once again, this is a proof that’s worth reading more
than once. The uncomputability of the halting prob-
lem is one of the fundamental theorems of computer
science, and is the starting point for much of the in-
vestigations we will see later. An excellent way to get
a better understanding of Theorem 8.7 is to go over
Section 8.3.2, which presents an alternative proof of
the same result.

8.3.1 Is the Halting problem really hard? (discussion)
Many people’s first instinct when they see the proof of Theorem 8.7
is to not believe it. That is, most people do believe the mathematical
statement, but intuitively it doesn’t seem that the Halting problem is
really that hard. After all, being uncomputable only means that HALT
cannot be computed by a Turing machine.

But programmers seem to solve HALT all the time by informally or
formally arguing that their programs halt. It’s true that their programs
are written in C or Python, as opposed to Turing machines, but that
makes no difference: we can easily translate back and forth between
this model and any other programming language.

298 introduction to theoretical computer science

1 This argument has also been connected to the
issues of consciousness and free will. I am personally
skeptical of its relevance to these issues. Perhaps the
reasoning is that humans have the ability to solve the
halting problem but they exercise their free will and
consciousness by choosing not to do so.

Figure 8.5: SMBC’s take on solving the Halting prob-
lem.

While every programmer encounters at some point an infinite loop,
is there really no way to solve the halting problem? Some people
argue that they personally can, if they think hard enough, determine
whether any concrete program that they are given will halt or not.
Some have even argued that humans in general have the ability to
do that, and hence humans have inherently superior intelligence to
computers or anything else modeled by Turing machines.1

The best answer we have so far is that there truly is no way to solve
HALT, whether using Macs, PCs, quantum computers, humans, or
any other combination of electronic, mechanical, and biological de-
vices. Indeed this assertion is the content of the Church-Turing Thesis.
This of course does not mean that for every possible program 𝑃 , it
is hard to decide if 𝑃 enters an infinite loop. Some programs don’t
even have loops at all (and hence trivially halt), and there are many
other far less trivial examples of programs that we can certify to never
enter an infinite loop (or programs that we know for sure that will
enter such a loop). However, there is no general procedure that would
determine for an arbitrary program 𝑃 whether it halts or not. More-
over, there are some very simple programs for which no one knows
whether they halt or not. For example, the following Python program
will halt if and only if Goldbach’s conjecture is false:

def isprime(p):

return all(p % i for i in range(2,p-1))

def Goldbach(n):

return any((isprime(p) and isprime(n-p))

for p in range(2,n-1))

n = 4

while True:

if not Goldbach(n): break

n+= 2

Given that Goldbach’s Conjecture has been open since 1742, it is
unclear that humans have any magical ability to say whether this (or
other similar programs) will halt or not.

8.3.2 A direct proof of the uncomputability of HALT (optional)
It turns out that we can combine the ideas of the proofs of Theo-
rem 8.6 and Theorem 8.7 to obtain a short proof of the latter theorem,
that does not appeal to the uncomputability of 𝐹 ∗. This short proof
appeared in print in a 1965 letter to the editor of Christopher Strachey:

http://smbc-comics.com/comic/halting
https://goo.gl/Bm4MWK
https://goo.gl/DX63q5

universality and uncomputability 299

To the Editor, The Computer Journal.
An Impossible Program
Sir,
A well-known piece of folk-lore among program-
mers holds that it is impossible to write a program
which can examine any other program and tell, in
every case, if it will terminate or get into a closed
loop when it is run. I have never actually seen a
proof of this in print, and though Alan Turing once
gave me a verbal proof (in a railway carriage on the
way to a Conference at the NPL in 1953), I unfor-
tunately and promptly forgot the details. This left
me with an uneasy feeling that the proof must be
long or complicated, but in fact it is so short and
simple that it may be of interest to casual readers.
The version below uses CPL, but not in any essential
way.
Suppose T[R] is a Boolean function taking a routine
(or program) R with no formal or free variables as
its arguments and that for all R, T[R] = True if R
terminates if run and that T[R] = False if R does
not terminate.
Consider the routine P defined as follows
rec routine P

§L: if T[P] go to L

Return §

If T[P] = True the routine P will loop, and it will
only terminate if T[P] = False. In each case ‘T[P]“
has exactly the wrong value, and this contradiction
shows that the function T cannot exist.
Yours faithfully,
C. Strachey
Churchill College, Cambridge

P
Try to stop and extract the argument for proving
Theorem 8.7 from the letter above.

Since CPL is not as common today, let us reproduce this proof. The
idea is the following: suppose for the sake of contradiction that there
exists a program T such that T(f,x) equals True iff f halts on input
x. (Strachey’s letter considers the no-input variant of HALT, but as
we’ll see, this is an immaterial distinction.) Then we can construct a
program P and an input x such that T(P,x) gives the wrong answer.
The idea is that on input x, the program P will do the following: run

300 introduction to theoretical computer science

T(x,x), and if the answer is True then go into an infinite loop, and
otherwise halt. Now you can see that T(P,P) will give the wrong
answer: if P halts when it gets its own code as input, then T(P,P) is
supposed to be True, but then P(P) will go into an infinite loop. And
if P does not halt, then T(P,P) is supposed to be False but then P(P)

will halt. We can also code this up in Python:

def CantSolveMe(T):

"""

Gets function T that claims to solve HALT.

Returns a pair (P,x) of code and input on which

T(P,x) ≠ HALT(x)

"""

def fool(x):

if T(x,x):

while True: pass

return "I halted"

return (fool,fool)

For example, consider the following Naive Python program T that
guesses that a given function does not halt if its input contains while
or for

def T(f,x):

"""Crude halting tester - decides it doesn't halt if it

contains a loop."""↪

import inspect

source = inspect.getsource(f)

if source.find("while"): return False

if source.find("for"): return False

return True

If we now set (f,x) = CantSolveMe(T), then T(f,x)=False but
f(x) does in fact halt. This is of course not specific to this particular T:
for every program T, if we run (f,x) = CantSolveMe(T) then we’ll
get an input on which T gives the wrong answer to HALT.

8.4 REDUCTIONS

The Halting problem turns out to be a linchpin of uncomputability, in
the sense that Theorem 8.7 has been used to show the uncomputabil-
ity of a great many interesting functions. We will see several examples
in such results in this chapter and the exercises, but there are many
more such results (see Fig. 8.6).

universality and uncomputability 301

Figure 8.6: Some uncomputability results. An arrow
from problem X to problem Y means that we use the
uncomputability of X to prove the uncomputability
of Y by reducing computing X to computing Y.
All of these results except for the MRDP Theorem
appear in either the text or exercises. The Halting
Problem HALT serves as our starting point for all
these uncomputability results as well as many others.

The idea behind such uncomputability results is conceptually sim-
ple but can at first be quite confusing. If we know that HALT is un-
computable, and we want to show that some other function BLAH is
uncomputable, then we can do so via a contrapositive argument (i.e.,
proof by contradiction). That is, we show that if there exists Turing
machine that computes BLAH then there exists a Turing machine that
computes HALT. (Indeed, this is exactly how we showed that HALT
itself is uncomputable, by reducing this fact to the uncomputability of
the function 𝐹 ∗ from Theorem 8.6.)

For example, to prove that BLAH is uncomputable, we could show
that there is a computable function 𝑅 ∶ {0, 1}∗ → {0, 1}∗ such that for
every pair 𝑀 and 𝑥, HALT(𝑀, 𝑥) = BLAH(𝑅(𝑀, 𝑥)). The existence of
such a function 𝑅 implies that if BLAH was computable then HALT
would be computable as well, hence leading to a contradiction! The
confusing part about reductions is that we are assuming something
we believe is false (that BLAH has an algorithm) to derive something
that we know is false (that HALT has an algorithm). Michael Sipser
describes such results as having the form “If pigs could whistle then
horses could fly”.

A reduction-based proof has two components. For starters, since
we need 𝑅 to be computable, we should describe the algorithm to
compute it. The algorithm to compute 𝑅 is known as a reduction since
the transformation 𝑅 modifies an input to HALT to an input to BLAH,
and hence reduces the task of computing HALT to the task of comput-
ing BLAH. The second component of a reduction-based proof is the
analysis of the algorithm 𝑅: namely a proof that 𝑅 does indeed satisfy
the desired properties.

302 introduction to theoretical computer science

Reduction-based proofs are just like other proofs by contradiction,
but the fact that they involve hypothetical algorithms that don’t really
exist tends to make reductions quite confusing. The one silver lining
is that at the end of the day the notion of reductions is mathematically
quite simple, and so it’s not that bad even if you have to go back to
first principles every time you need to remember what is the direction
that a reduction should go in.

R
Remark 8.9 — Reductions are algorithms. A reduction
is an algorithm, which means that, as discussed in
Remark 0.3, a reduction has three components:

• Specification (what): In the case of a reduction
from HALT to BLAH, the specification is that func-
tion 𝑅 ∶ {0, 1}∗ → {0, 1}∗ should satisfy that
HALT(𝑀, 𝑥) = BLAH(𝑅(𝑀, 𝑥)) for every Tur-
ing machine 𝑀 and input 𝑥. In general, to reduce
a function 𝐹 to 𝐺, the reduction should satisfy
𝐹(𝑤) = 𝐺(𝑅(𝑤)) for every input 𝑤 to 𝐹 .

• Implementation (how): The algorithm’s descrip-
tion: the precise instructions how to transform an
input 𝑤 to the output 𝑅(𝑤).

• Analysis (why): A proof that the algorithm meets
the specification. In particular, in a reduction
from 𝐹 to 𝐺 this is a proof that for every input
𝑤, the output 𝑦 of the algorithm satisfies that
𝐹(𝑤) = 𝐺(𝑦).

8.4.1 Example: Halting on the zero problem
Here is a concrete example for a proof by reduction. We define the
function HALTONZERO ∶ {0, 1}∗ → {0, 1} as follows. Given any
string 𝑀 , HALTONZERO(𝑀) = 1 if and only if 𝑀 describes a Turing
machine that halts when it is given the string 0 as input. A priori
HALTONZERO seems like a potentially easier function to compute
than the full-fledged HALT function, and so we could perhaps hope
that it is not uncomputable. Alas, the following theorem shows that
this is not the case:

Theorem 8.10 — Halting without input. HALTONZERO is uncomputable.

P
The proof of Theorem 8.10 is below, but before read-
ing it you might want to pause for a couple of minutes
and think how you would prove it yourself. In partic-
ular, try to think of what a reduction from HALT to

universality and uncomputability 303

HALTONZERO would look like. Doing so is an excel-
lent way to get some initial comfort with the notion
of proofs by reduction, which a technique we will be
using time and again in this book.

Figure 8.7: To prove Theorem 8.10, we show that
HALTONZERO is uncomputable by giving a reduction
from the task of computing HALT to the task of com-
puting HALTONZERO. This shows that if there was a
hypothetical algorithm 𝐴 computing HALTONZERO,
then there would be an algorithm 𝐵 computing
HALT, contradicting Theorem 8.7. Since neither 𝐴 nor
𝐵 actually exists, this is an example of an implication
of the form “if pigs could whistle then horses could
fly”.

Proof of Theorem 8.10. The proof is by reduction from HALT, see
Fig. 8.7. We will assume, towards the sake of contradiction, that
HALTONZERO is computable by some algorithm 𝐴, and use this
hypothetical algorithm 𝐴 to construct an algorithm 𝐵 to compute
HALT, hence obtaining a contradiction to Theorem 8.7. (As discussed
in ??, following our “eat your cake and have it too” paradigm, we just
use the generic name “algorithm” rather than worrying whether we
model them as Turing machines, NAND-TM programs, NAND-RAM,
etc.; this makes no difference since all these models are equivalent to
one another.)

Since this is our first proof by reduction from the Halting prob-
lem, we will spell it out in more details than usual. Such a proof by
reduction consists of two steps:

1. Description of the reduction: We will describe the operation of our
algorithm 𝐵, and how it makes “function calls” to the hypothetical
algorithm 𝐴.

2. Analysis of the reduction: We will then prove that under the hypoth-
esis that Algorithm 𝐴 computes HALTONZERO, Algorithm 𝐵 will
compute HALT.

304 introduction to theoretical computer science

Algorithm 8.11 — 𝐻𝐴𝐿𝑇 to 𝐻𝐴𝐿𝑇 𝑂𝑁𝑍𝐸𝑅𝑂 reduction.

Input: Turing machine 𝑀 and string 𝑥.
Output: Turing machine 𝑀 ′ such that 𝑀 halts on 𝑥 iff 𝑀 ′

halts on zero
1: procedure 𝑁𝑀,𝑥(𝑤) # Description of the T.M. 𝑁𝑀,𝑥
2: return 𝐸𝑉 𝐴𝐿(𝑀, 𝑥) # Ignore the

Input: 𝑤, evaluate 𝑀 on 𝑥.
3: end procedure
4: return 𝑁𝑀,𝑥 # We do not execute 𝑁𝑀,𝑥: only
5: return its description

Our Algorithm 𝐵 works as follows: on input 𝑀, 𝑥, it runs Algo-
rithm 8.11 to obtain a Turing Machine 𝑀 ′, and then returns 𝐴(𝑀 ′).
The machine 𝑀 ′ ignores its input 𝑧 and simply runs 𝑀 on 𝑥.

In pseudocode, the program 𝑁𝑀,𝑥 will look something like the
following:

def N(z):

M = r'.......'

a string constant containing desc. of M

x = r'.......'

a string constant containing x

return eval(M,x)

note that we ignore the input z

That is, if we think of 𝑁𝑀,𝑥 as a program, then it is a program that
contains 𝑀 and 𝑥 as “hardwired constants”, and given any input 𝑧, it
simply ignores the input and always returns the result of evaluating
𝑀 on 𝑥. The algorithm 𝐵 does not actually execute the machine 𝑁𝑀,𝑥.
𝐵 merely writes down the description of 𝑁𝑀,𝑥 as a string (just as we
did above) and feeds this string as input to 𝐴.

The above completes the description of the reduction. The analysis is
obtained by proving the following claim:

Claim: For every strings 𝑀, 𝑥, 𝑧, the machine 𝑁𝑀,𝑥 constructed by
Algorithm 𝐵 in Step 1 satisfies that 𝑁𝑀,𝑥 halts on 𝑧 if and only if the
program described by 𝑀 halts on the input 𝑥.

Proof of Claim: Since 𝑁𝑀,𝑥 ignores its input and evaluates 𝑀 on 𝑥
using the universal Turing machine, it will halt on 𝑧 if and only if 𝑀
halts on 𝑥.

In particular if we instantiate this claim with the input 𝑧 = 0 to
𝑁𝑀,𝑥, we see that HALTONZERO(𝑁𝑀,𝑥) = HALT(𝑀, 𝑥). Thus if
the hypothetical algorithm 𝐴 satisfies 𝐴(𝑀) = HALTONZERO(𝑀)
for every 𝑀 then the algorithm 𝐵 we construct satisfies 𝐵(𝑀, 𝑥) =

universality and uncomputability 305

HALT(𝑀, 𝑥) for every 𝑀, 𝑥, contradicting the uncomputability of
HALT.

�

R
Remark 8.12 — The hardwiring technique. In the proof of
Theorem 8.10 we used the technique of “hardwiring”
an input 𝑥 to a program/machine 𝑃 . That is, modify-
ing a program 𝑃 that it uses “hardwired constants”
for some of all of its input. This technique is quite
common in reductions and elsewhere, and we will
often use it again in this course.

8.5 RICE’S THEOREM AND THE IMPOSSIBILITY OF GENERAL
SOFTWARE VERIFICATION

The uncomputability of the Halting problem turns out to be a special
case of a much more general phenomenon. Namely, that we cannot
certify semantic properties of general purpose programs. “Semantic prop-
erties” mean properties of the function that the program computes, as
opposed to properties that depend on the particular syntax used by
the program.

An example for a semantic property of a program 𝑃 is the property
that whenever 𝑃 is given an input string with an even number of 1’s,
it outputs 0. Another example is the property that 𝑃 will always halt
whenever the input ends with a 1. In contrast, the property that a C
program contains a comment before every function declaration is not
a semantic property, since it depends on the actual source code as
opposed to the input/output relation.

Checking semantic properties of programs is of great interest, as it
corresponds to checking whether a program conforms to a specifica-
tion. Alas it turns out that such properties are in general uncomputable.
We have already seen some examples of uncomputable semantic func-
tions, namely HALT and HALTONZERO, but these are just the “tip of
the iceberg”. We start by observing one more such example:

Theorem 8.13 — Computing all zero function. Let ZEROFUNC ∶ {0, 1}∗ →
{0, 1} be the function such that for every 𝑀 ∈ {0, 1}∗, ZEROFUNC(𝑀) =
1 if and only if 𝑀 represents a Turing machine such that 𝑀 outputs
0 on every input 𝑥 ∈ {0, 1}∗. Then ZEROFUNC is uncomputable.

P
Despite the similarity in their names, ZEROFUNC and
HALTONZERO are two different functions. For exam-

306 introduction to theoretical computer science

ple, if 𝑀 is a Turing machine that on input 𝑥 ∈ {0, 1}∗,
halts and outputs the OR of all of 𝑥’s coordinates, then
HALTONZERO(𝑀) = 1 (since 𝑀 does halt on the
input 0) but ZEROFUNC(𝑀) = 0 (since 𝑀 does not
compute the constant zero function).

Proof of Theorem 8.13. The proof is by reduction to HALTONZERO.
Suppose, towards the sake of contradiction, that there was an algo-
rithm 𝐴 such that 𝐴(𝑀) = ZEROFUNC(𝑀) for every 𝑀 ∈ {0, 1}∗.
Then we will construct an algorithm 𝐵 that solves HALTONZERO,
contradicting Theorem 8.10.

Given a Turing machine 𝑁 (which is the input to HALTONZERO),
our Algorithm 𝐵 does the following:

1. Construct a Turing Machine 𝑀 which on input 𝑥 ∈ {0, 1}∗, first
runs 𝑁(0) and then outputs 0.

2. Return 𝐴(𝑀).

Now if 𝑁 halts on the input 0 then the Turing machine 𝑀 com-
putes the constant zero function, and hence under our assumption
that 𝐴 computes ZEROFUNC, 𝐴(𝑀) = 1. If 𝑁 does not halt on the
input 0, then the Turing machine 𝑀 will not halt on any input, and
so in particular will not compute the constant zero function. Hence
under our assumption that 𝐴 computes ZEROFUNC, 𝐴(𝑀) = 0.
We see that in both cases, ZEROFUNC(𝑀) = HALTONZERO(𝑁)
and hence the value that Algorithm 𝐵 returns in step 2 is equal to
HALTONZERO(𝑁) which is what we needed to prove.

�

Another result along similar lines is the following:

Theorem 8.14 — Uncomputability of verifying parity. The following func-
tion is uncomputable

COMPUTES-PARITY(𝑃) =
⎧{
⎨{⎩

1 𝑃 computes the parity function
0 otherwise

(8.4)

P
We leave the proof of Theorem 8.14 as an exercise
(Exercise 8.6). I strongly encourage you to stop here
and try to solve this exercise.

universality and uncomputability 307

8.5.1 Rice’s Theorem
Theorem 8.14 can be generalized far beyond the parity function. In
fact, this generalization rules out verifying any type of semantic spec-
ification on programs. We define a semantic specification on programs
to be some property that does not depend on the code of the program
but just on the function that the program computes.

For example, consider the following two C programs

int First(int k) {

return 2*k;

}

int Second(int n) {

int i = 0;

int j = 0

while (j<n) {

i = i + 2;

j= j + 1;

}

return i;

}

First and Second are two distinct C programs, but they compute
the same function. A semantic property, would be either true for both
programs or false for both programs, since it depends on the function
the programs compute and not on their code. An example for a se-
mantic property that both First and Second satisfy is the following:
“The program 𝑃 computes a function 𝑓 mapping integers to integers satisfy-
ing that 𝑓(𝑛) ≥ 𝑛 for every input 𝑛”.

A property is not semantic if it depends on the source code rather
than the input/output behavior. For example, properties such as “the
program contains the variable k” or “the program uses the while
operation” are not semantic. Such properties can be true for one of
the programs and false for the others. Formally, we define semantic
properties as follows:

Definition 8.15 — Semantic properties. A pair of Turing machines
𝑀 and 𝑀 ′ are functionally equivalent if for every 𝑥 ∈ {0, 1}∗,
𝑀(𝑥) = 𝑀 ′(𝑥). (In particular, 𝑀(𝑥) = ⊥ iff 𝑀 ′(𝑥) = ⊥ for all
𝑥.)

A function 𝐹 ∶ {0, 1}∗ → {0, 1} is semantic if for every pair of
strings 𝑀, 𝑀 ′ that represent functionally equivalent Turing ma-
chines, 𝐹(𝑀) = 𝐹(𝑀 ′). (Recall that we assume that every string
represents some Turing machine, see Remark 8.3)

308 introduction to theoretical computer science

There are two trivial examples of semantic functions: the constant
one function and the constant zero function. For example, if 𝑍 is the
constant zero function (i.e., 𝑍(𝑀) = 0 for every 𝑀) then clearly
𝐹(𝑀) = 𝐹(𝑀 ′) for every pair of Turing machines 𝑀 and 𝑀 ′ that are
functionally equivalent 𝑀 and 𝑀 ′. Here is a non-trivial example

Solved Exercise 8.1 — 𝑍𝐸𝑅𝑂𝐹𝑈𝑁𝐶 is semantic. Prove that the function
ZEROFUNC is semantic.

�

Solution:

Recall that ZEROFUNC(𝑀) = 1 if and only if 𝑀(𝑥) = 0 for
every 𝑥 ∈ {0, 1}∗. If 𝑀 and 𝑀 ′ are functionally equivalent, then for
every 𝑥, 𝑀(𝑥) = 𝑀 ′(𝑥). Hence ZEROFUNC(𝑀) = 1 if and only if
ZEROFUNC(𝑀 ′) = 1.

�

Often the properties of programs that we are most interested in
computing are the semantic ones, since we want to understand the
programs’ functionality. Unfortunately, Rice’s Theorem tells us that
these properties are all uncomputable:

Theorem 8.16 — Rice’s Theorem. Let 𝐹 ∶ {0, 1}∗ → {0, 1}. If 𝐹 is seman-
tic and non-trivial then it is uncomputable.

Proof Idea:

The idea behind the proof is to show that every semantic non-
trivial function 𝐹 is at least as hard to compute as HALTONZERO.
This will conclude the proof since by Theorem 8.10, HALTONZERO
is uncomputable. If a function 𝐹 is non trivial then there are two
machines 𝑀0 and 𝑀1 such that 𝐹(𝑀0) = 0 and 𝐹(𝑀1) = 1. So,
the goal would be to take a machine 𝑁 and find a way to map it into
a machine 𝑀 = 𝑅(𝑁), such that (i) if 𝑁 halts on zero then 𝑀 is
functionally equivalent to 𝑀1 and (ii) if 𝑁 does not halt on zero then
𝑀 is functionally equivalent 𝑀0.

Because 𝐹 is semantic, if we achieved this, then we would be guar-
anteed that HALTONZERO(𝑁) = 𝐹(𝑅(𝑁)), and hence would show
that if 𝐹 was computable, then HALTONZERO would be computable
as well, contradicting Theorem 8.10.

⋆

Proof of Theorem 8.16. We will not give the proof in full formality, but
rather illustrate the proof idea by restricting our attention to a particu-
lar semantic function 𝐹 . However, the same techniques generalize to
all possible semantic functions. Define MONOTONE ∶ {0, 1}∗ → {0, 1}
as follows: MONOTONE(𝑀) = 1 if there does not exist 𝑛 ∈ ℕ and

universality and uncomputability 309

two inputs 𝑥, 𝑥′ ∈ {0, 1}𝑛 such that for every 𝑖 ∈ [𝑛] 𝑥𝑖 ≤ 𝑥′
𝑖 but 𝑀(𝑥)

outputs 1 and 𝑀(𝑥′) = 0. That is, MONOTONE(𝑀) = 1 if it’s not
possible to find an input 𝑥 such that flipping some bits of 𝑥 from 0 to
1 will change 𝑀 ’s output in the other direction from 1 to 0. We will
prove that MONOTONE is uncomputable, but the proof will easily
generalize to any semantic function.

We start by noting that MONOTONE is neither the constant zero
nor the constant one function:

• The machine INF that simply goes into an infinite loop on every
input satisfies MONOTONE(INF) = 1, since INF is not defined
anywhere and so in particular there are no two inputs 𝑥, 𝑥′ where
𝑥𝑖 ≤ 𝑥′

𝑖 for every 𝑖 but INF(𝑥) = 0 and INF(𝑥′) = 1.

• The machine PAR that computes the XOR or parity of its input, is
not monotone (e.g., PAR(1, 1, 0, 0, … , 0) = 0 but PAR(1, 0, 0, … , 0) =
0) and hence MONOTONE(PAR) = 0.

(Note that INF and PAR are machines and not functions.)
We will now give a reduction from HALTONZERO to

MONOTONE. That is, we assume towards a contradiction that
there exists an algorithm 𝐴 that computes MONOTONE and we will
build an algorithm 𝐵 that computes HALTONZERO. Our algorithm 𝐵
will work as follows:

Algorithm 𝐵:
Input: String 𝑁 describing a Turing machine. (Goal:
Compute HALTONZERO(𝑁))
Assumption: Access to Algorithm 𝐴 to compute
MONOTONE.
Operation:

1. Construct the following machine 𝑀 : “On in-
put 𝑧 ∈ {0, 1}∗ do: (a) Run 𝑁(0), (b) Return
PAR(𝑧)”.

2. Return 1 − 𝐴(𝑀).

To complete the proof we need to show that 𝐵 outputs the cor-
rect answer, under our assumption that 𝐴 computes MONOTONE.
In other words, we need to show that HALTONZERO(𝑁) = 1 −
𝑀𝑂𝑁𝑂𝑇 𝑂𝑁𝐸(𝑀). Suppose that 𝑁 does not halt on zero. In this
case the program 𝑀 constructed by Algorithm 𝐵 enters into an in-
finite loop in step (a) and will never reach step (b). Hence in this
case 𝑁 is functionally equivalent to INF. (The machine 𝑁 is not
the same machine as INF: its description or code is different. But it

310 introduction to theoretical computer science

does have the same input/output behavior (in this case) of never
halting on any input. Also, while the program 𝑀 will go into an in-
finite loop on every input, Algorithm 𝐵 never actually runs 𝑀 : it
only produces its code and feeds it to 𝐴. Hence Algorithm 𝐵 will
not enter into an infinite loop even in this case.) Thus in this case,
MONOTONE(𝑁) = MONOTONE(INF) = 1.

If 𝑁 does halt on zero, then step (a) in 𝑀 will eventually conclude
and 𝑀 ’s output will be determined by step (b), where it simply out-
puts the parity of its input. Hence in this case, 𝑀 computes the non-
monotone parity function (i.e., is functionally equivalent to PAR), and
so we get that MONOTONE(𝑀) = MONOTONE(PAR) = 0. In both
cases, MONOTONE(𝑀) = 1 − 𝐻𝐴𝐿𝑇 𝑂𝑁𝑍𝐸𝑅𝑂(𝑁), which is what
we wanted to prove.

An examination of this proof shows that we did not use anything
about MONOTONE beyond the fact that it is semantic and non-trivial.
For every semantic non-trivial 𝐹 , we can use the same proof, replacing
PAR and INF with two machines 𝑀0 and 𝑀1 such that 𝐹(𝑀0) = 0 and
𝐹(𝑀1) = 1. Such machines must exist if 𝐹 is non trivial.

�

R
Remark 8.17 — Semantic is not the same as uncom-
putable. Rice’s Theorem is so powerful and such a
popular way of proving uncomputability that peo-
ple sometimes get confused and think that it is the
only way to prove uncomputability. In particular, a
common misconception is that if a function 𝐹 is not
semantic then it is computable. This is not at all the
case.
For example, consider the following function
HALTNOYALE ∶ {0, 1}∗ → {0, 1}. This is a function
that on input a string that represents a NAND-TM
program 𝑃 , outputs 1 if and only if both (i) 𝑃 halts
on the input 0, and (ii) the program 𝑃 does not con-
tain a variable with the identifier Yale. The function
HALTNOYALE is clearly not semantic, as it will out-
put two different values when given as input one of
the following two functionally equivalent programs:

Yale[0] = NAND(X[0],X[0])
Y[0] = NAND(X[0],Yale[0])

and

Harvard[0] = NAND(X[0],X[0])
Y[0] = NAND(X[0],Harvard[0])

However, HALTNOYALE is uncomputable since every
program 𝑃 can be transformed into an equivalent
(and in fact improved :)) program 𝑃 ′ that does not

universality and uncomputability 311

contain the variable Yale. Hence if we could compute
HALTONYALE then determine halting on zero for
NAND-TM programs (and hence for Turing machines
as well).
Moreover, as we will see in Chapter 10, there are un-
computable functions whose inputs are not programs,
and hence for which the adjective “semantic” is not
applicable.
Properties such as “the program contains the variable
Yale” are sometimes known as syntactic properties.
The terms “semantic” and “syntactic” are used be-
yond the realm of programming languages: a famous
example of a syntactically correct but semantically
meaningless sentence in English is Chomsky’s “Color-
less green ideas sleep furiously.” However, formally
defining “syntactic properties” is rather subtle and we
will not use this terminology in this book, sticking to
the terms “semantic” and “non semantic” only.

8.5.2 Halting and Rice’s Theorem for other Turing-complete models
As we saw before, many natural computational models turn out to be
equivalent to one another, in the sense that we can transform a “pro-
gram” of one model (such as a 𝜆 expression, or a game-of-life config-
urations) into another model (such as a NAND-TM program). This
equivalence implies that we can translate the uncomputability of the
Halting problem for NAND-TM programs into uncomputability for
Halting in other models. For example:

Theorem 8.18 — NAND-TM Machine Halting. Let NANDTMHALT ∶
{0, 1}∗ → {0, 1} be the function that on input strings 𝑃 ∈
{0, 1}∗ and 𝑥 ∈ {0, 1}∗ outputs 1 if the NAND-TM program de-
scribed by 𝑃 halts on the input 𝑥 and outputs 0 otherwise. Then
NANDTMHALT is uncomputable.

P
Once again, this is a good point for you to stop and try
to prove the result yourself before reading the proof
below.

Proof. We have seen in Theorem 6.12 that for every Turing machine
𝑀 , there is an equivalent NAND-TM program 𝑃𝑀 such that for ev-
ery 𝑥, 𝑃𝑀(𝑥) = 𝑀(𝑥). In particular this means that HALT(𝑀) =
NANDTMHALT(𝑃𝑀).

The transformation 𝑀 ↦ 𝑃𝑀 that is obtained from the proof
of Theorem 6.12 is constructive. That is, the proof yields a way to

https://goo.gl/4gXoiV
https://goo.gl/4gXoiV

312 introduction to theoretical computer science

compute the map 𝑀 ↦ 𝑃𝑀 . This means that this proof yields a
reduction from task of computing HALT to the task of computing
NANDTMHALT, which means that since HALT is uncomputable,
neither is NANDTMHALT.

�

The same proof carries over to other computational models such as
the 𝜆 calculus, two dimensional (or even one-dimensional) automata etc.
Hence for example, there is no algorithm to decide if a 𝜆 expression
evaluates the identity function, and no algorithm to decide whether
an initial configuration of the game of life will result in eventually
coloring the cell (0, 0) black or not.

Indeed, we can generalize Rice’s Theorem to all these models. For
example, if 𝐹 ∶ {0, 1}∗ → {0, 1} is a non-trivial function such that
𝐹(𝑃) = 𝐹(𝑃 ′) for every functionally equivalent NAND-TM programs
𝑃 , 𝑃 ′ then 𝐹 is uncomputable, and the same holds for NAND-RAM
programs, 𝜆-expressions, and all other Turing complete models (as
defined in Definition 7.5), see also Exercise 8.12.

8.5.3 Is software verification doomed? (discussion)
Programs are increasingly being used for mission critical purposes,
whether it’s running our banking system, flying planes, or monitoring
nuclear reactors. If we can’t even give a certification algorithm that
a program correctly computes the parity function, how can we ever
be assured that a program does what it is supposed to do? The key
insight is that while it is impossible to certify that a general program
conforms with a specification, it is possible to write a program in
the first place in a way that will make it easier to certify. As a trivial
example, if you write a program without loops, then you can certify
that it halts. Also, while it might not be possible to certify that an
arbitrary program computes the parity function, it is quite possible to
write a particular program 𝑃 for which we can mathematically prove
that 𝑃 computes the parity. In fact, writing programs or algorithms
and providing proofs for their correctness is what we do all the time in
algorithms research.

The field of software verification is concerned with verifying that
given programs satisfy certain conditions. These conditions can be
that the program computes a certain function, that it never writes
into a dangerous memory location, that is respects certain invari-
ants, and others. While the general tasks of verifying this may be
uncomputable, researchers have managed to do so for many inter-
esting cases, especially if the program is written in the first place in
a formalism or programming language that makes verification eas-
ier. That said, verification, especially of large and complex programs,
remains a highly challenging task in practice as well, and the num-

universality and uncomputability 313

ber of programs that have been formally proven correct is still quite
small. Moreover, even phrasing the right theorem to prove (i.e., the
specification) if often a highly non-trivial endeavor.

Figure 8.8: The set R of computable Boolean functions
(Definition 6.4) is a proper subset of the set of all
functions mapping {0, 1}∗ to {0, 1}. In this chapter
we saw a few examples of elements in the latter set
that are not in the former.

✓ Lecture Recap

• There is a universal Turing machine (or NAND-TM
program) 𝑈 such that on input a description of a
Turing machine 𝑀 and some input 𝑥, 𝑈(𝑀, 𝑥) halts
and outputs 𝑀(𝑥) if (and only if) 𝑀 halts on input
𝑥. Unlike in the case of finite computation (i.e.,
NAND-CIRC programs / circuits), the input to
the program 𝑈 can be a machine 𝑀 that has more
states than 𝑈 itself.

• Unlike the finite case, there are actually functions
that are inherently uncomputable in the sense that
they cannot be computed by any Turing machine.

• These include not only some “degenerate” or “eso-
teric” functions but also functions that people have
deeply care about and conjectured that could be
computed.

• If the Church-Turing thesis holds then a function
𝐹 that is uncomputable according to our definition
cannot be computed by any means in our physical
world.

8.6 EXERCISES

Exercise 8.1 — NAND-RAM Halt. Let NANDRAMHALT ∶ {0, 1}∗ → {0, 1}
be the function such that on input (𝑃 , 𝑥) where 𝑃 represents a NAND-

314 introduction to theoretical computer science

2 A machine with alphabet Σ can have at most |Σ|𝑇
choices for the contents of the first 𝑇 locations of
its tape. What happens if the machine repeats a
previously seen configuration, in the sense that the
tape contents, the head location, and the current state,
are all identical to what they were in some previous
state of the execution?

RAM program, NANDRAMHALT(𝑃 , 𝑥) = 1 iff 𝑃 halts on the input 𝑥.
Prove that NANDRAMHALT is uncomputable.

�

Exercise 8.2 — Timed halting. Let TIMEDHALT ∶ {0, 1}∗ → {0, 1} be
the function that on input (a string representing) a triple (𝑀, 𝑥, 𝑇),
TIMEDHALT(𝑀, 𝑥, 𝑇) = 1 iff the Turing machine 𝑀 , on input 𝑥,
halts within at most 𝑇 steps (where a step is defined as one sequence
of reading a symbol from the tape, updating the state, writing a new
symbol and (potentially) moving the head).

Prove that TIMEDHALT is computable.
�

Exercise 8.3 — Space halting (challenging). Let SPACEHALT ∶ {0, 1}∗ →
{0, 1} be the function that on input (a string representing) a triple
(𝑀, 𝑥, 𝑇), SPACEHALT(𝑀, 𝑥, 𝑇) = 1 iff the Turing machine 𝑀 , on
input 𝑥, halts before its head reached the 𝑇 -th location of its tape. (We
don’t care how many steps 𝑀 makes, as long as the head stays inside
locations {0, … , 𝑇 − 1}.)

Prove that SPACEHALT is computable. See footnote for hint2
�

Exercise 8.4 — Computable compositions. Suppose that 𝐹 ∶ {0, 1}∗ → {0, 1}
and 𝐺 ∶ {0, 1}∗ → {0, 1} are computable functions. For each one of the
following functions 𝐻 , either prove that 𝐻 is necessarily computable or
give an example of a pair 𝐹 and 𝐺 of computable functions such that
𝐻 will not be computable. Prove your assertions.

1. 𝐻(𝑥) = 1 iff 𝐹(𝑥) = 1 OR 𝐺(𝑥) = 1.

2. 𝐻(𝑥) = 1 iff there exist two nonempty strings 𝑢, 𝑣 ∈ {0, 1}∗ such
that 𝑥 = 𝑢𝑣 (i.e., 𝑥 is the concatenation of 𝑢 and 𝑣), 𝐹(𝑢) = 1 and
𝐺(𝑣) = 1.

3. 𝐻(𝑥) = 1 iff there exist a list 𝑢0, … , 𝑢𝑡−1 of non empty strings such
that strings𝐹(𝑢𝑖) = 1 for every 𝑖 ∈ [𝑡] and 𝑥 = 𝑢0𝑢1 ⋯ 𝑢𝑡−1.

4. 𝐻(𝑥) = 1 iff 𝑥 is a valid string representation of a NAND++
program 𝑃 such that for every 𝑧 ∈ {0, 1}∗, on input 𝑧 the program
𝑃 outputs 𝐹(𝑧).

5. 𝐻(𝑥) = 1 iff 𝑥 is a valid string representation of a NAND++
program 𝑃 such that on input 𝑥 the program 𝑃 outputs 𝐹(𝑥).

6. 𝐻(𝑥) = 1 iff 𝑥 is a valid string representation of a NAND++
program 𝑃 such that on input 𝑥, 𝑃 outputs 𝐹(𝑥) after executing at
most 100 ⋅ |𝑥|2 lines.

�

universality and uncomputability 315

3 Hint: You can use Rice’s Theorem.

4 Hint: While it cannot be applied directly, with a
little “massaging” you can prove this using Rice’s
Theorem.

5 HALT has this property.

6 You can either use the diagonalization method to
prove this directly or show that the set of all recur-
sively enumerable functions is countable.

Exercise 8.5 Prove that the following function FINITE ∶ {0, 1}∗ → {0, 1}
is uncomputable. On input 𝑃 ∈ {0, 1}∗, we define FINITE(𝑃) = 1
if and only if 𝑃 is a string that represents a NAND++ program such
that there only a finite number of inputs 𝑥 ∈ {0, 1}∗ s.t. 𝑃(𝑥) = 1.3

�

Exercise 8.6 — Computing parity. Prove Theorem 8.14 without using Rice’s
Theorem.

�

Exercise 8.7 — TM Equivalence. Let EQ ∶ {0, 1}∗ ∶→ {0, 1} be the func-
tion defined as follows, given a string representing a pair (𝑀, 𝑀 ′)
of Turing machines, EQ(𝑀, 𝑀 ′) = 1 iff 𝑀 and 𝑀 ′ are functionally
equivalent as per Definition 8.15. Prove that EQ is uncomputable.

Note that you cannot use Rice’s Theorem directly, as this theorem
only deals with functions that take a single Turing machine as input,
and EQ takes two machines.

�

Exercise 8.8 For each of the following two functions, say whether it is
computable or not:

1. Given a NAND-TM program 𝑃 , an input 𝑥, and a number 𝑘, when
we run 𝑃 on 𝑥, does the index variable i ever reach 𝑘?

2. Given a NAND-TM program 𝑃 , an input 𝑥, and a number 𝑘, when
we run 𝑃 on 𝑥, does 𝑃 ever write to an array at index 𝑘?

�

Exercise 8.9 Let 𝐹 ∶ {0, 1}∗ → {0, 1} be the function that is defined as
follows. On input a string 𝑃 that represents a NAND-RAM program
and a String 𝑀 that represents a Turing machine, 𝐹(𝑃 , 𝑀) = 1 if and
only if there exists some input 𝑥 such 𝑃 halts on 𝑥 but 𝑀 does not halt
on 𝑥. Prove that 𝐹 is uncomputable. See footnote for hint.4

�

Exercise 8.10 — Recursively enumerable. Define a function 𝐹 ∶ {0, 1}∗ ∶→
{0, 1} to be recursively enumerable if there exists a Turing machine 𝑀
such that such that for every 𝑥 ∈ {0, 1}∗, if 𝐹(𝑥) = 1 then 𝑀(𝑥) = 1,
and if 𝐹(𝑥) = 0 then 𝑀(𝑥) = ⊥. (i.e., if 𝐹(𝑥) = 0 then 𝑀 does not halt
on 𝑥.)

1. Prove that every computable 𝐹 is also recursively enumerable.

2. Prove that there exists 𝐹 that is not computable but is recursively
enumerable. See footnote for hint.5

3. Prove that there exists a function 𝐹 ∶ {0, 1}∗ → {0, 1} such that 𝐹 is
not recursively enumerable. See footnote for hint.6

316 introduction to theoretical computer science

7 HALT has this property: show that if both HALT
and 𝐻𝐴𝐿𝑇 were recursively enumerable then HALT
would be in fact computable.

8 Show that any 𝐺 satisfying (b) must be semantic.

4. Prove that there exists a function 𝐹 ∶ {0, 1}∗ → {0, 1} such that
𝐹 is recursively enumerable but the function 𝐹 defined as 𝐹(𝑥) =
1 − 𝐹(𝑥) is not recursively enumerable. See footnote for hint.7

�

Exercise 8.11 — Rice’s Theorem: standard form. In this exercise we will
prove Rice’s Theorem in the form that it is typically stated in the litera-
ture.

For a Turing machine 𝑀 , define 𝐿(𝑀) ⊆ {0, 1}∗ to be the set of all
𝑥 ∈ {0, 1}∗ such that 𝑀 halts on the input 𝑥 and outputs 1. (The set
𝐿(𝑀) is known in the literature as the language recognized by 𝑀 . Note
that 𝑀 might either output a value other than 1 or not halt at all on
inputs 𝑥 ∉ 𝐿(𝑀).)

1. Prove that for every Turing Machine 𝑀 , if we define 𝐹𝑀 ∶ {0, 1}∗ →
{0, 1} to be the function such that 𝐹𝑀(𝑥) = 1 iff 𝑥 ∈ 𝐿(𝑀) then 𝐹𝑀
is recursively enumerable as defined in Exercise 8.10.

2. Use Theorem 8.16 to prove that for every 𝐺 ∶ {0, 1}∗ → {0, 1}, if (a)
𝐺 is neither the constant zero nor the constant one function, and
(b) for every 𝑀, 𝑀 ′ such that 𝐿(𝑀) = 𝐿(𝑀 ′), 𝐺(𝑀) = 𝐺(𝑀 ′),
then 𝐺 is uncomputable. See footnote for hint.8

�

Exercise 8.12 — Rice’s Theorem for general Turing-equivalent models (optional).

Let ℱ be the set of all partial functions from {0, 1}∗ to {0, 1} and ℳ ∶
{0, 1}∗ → ℱ be a Turing-equivalent model as defined in Definition 7.5.
We define a function 𝐹 ∶ {0, 1}∗ → {0, 1} to be ℳ-semantic if there
exists some 𝒢 ∶ ℱ → {0, 1} such that 𝐹(𝑃) = 𝒢(ℳ(𝑃)) for every
𝑃 ∈ {0, 1}∗.

Prove that for every ℳ-semantic 𝐹 ∶ {0, 1}∗ → {0, 1} that is neither
the constant one nor the constant zero function, 𝐹 is uncomputable.

�

8.7 BIBLIOGRAPHICAL NOTES

The cartoon of the Halting problem in Fig. 8.1 and taken from Charles
Cooper’s website.

Section 7.2 in [MM11] gives a highly recommended overview of
uncomputability. Gödel, Escher, Bach [Hof99] is a classic popular
science book that touches on uncomputability, and unprovability, and
specifically Gödel’s Theorem that we will see in Chapter 10. See also
the recent book by Holt [Hol18].

The history of the definition of a function is intertwined with the
development of mathematics as a field. For many years, a function

https://www.coopertoons.com/education/haltingproblem/haltingproblem.html/
https://www.coopertoons.com/education/haltingproblem/haltingproblem.html/

universality and uncomputability 317

was identified (as per Euler’s quote above) with the means to calcu-
late the output from the input. In the 1800’s, with the invention of the
Fourier series and with the systematic study of continuity and dif-
ferentiability, people have starting looking at more general kinds of
functions, but the modern definition of a function as an arbitrary map-
ping was not yet universally accepted. For example, in 1899 Poincare
wrote “we have seen a mass of bizarre functions which appear to be forced
to resemble as little as possible honest functions which serve some purpose.
… they are invented on purpose to show that our ancestor’s reasoning was
at fault, and we shall never get anything more than that out of them”. Some
of this fascinating history is discussed in [grabiner2005the ; Gra83;
Kle91; Lüt02].

The existence of a universal Turing machine, and the uncomputabil-
ity of HALT was first shown by Turing in his seminal paper [Tur37],
though closely related results were shown by Church a year before.
These works built on Gödel’s 1931 incompleteness theorem that we will
discuss in Chapter 10.

Some universal Turing Machines with a small alphabet and number
of states are given in [Rog96], including a single-tape universal Turing
machine with the binary alphabet and with less than 25 states; see
also the survey [WN09]. Adam Yedidia has written software to help
in producing Turing machines with a small number of states. This is
related to the recreational pastime of “Code Golfing” which is about
solving a certain computational task using the as short as possible
program.

The diagonalization argument used to prove uncomputability of 𝐹 ∗

is derived from Cantor’s argument for the uncountability of the reals
discussed in Chapter 2.

Christopher Strachey was an English computer scientist and the
inventor of the CPL programming language. He was also an early
artificial intelligence visionary, programming a computer to play
Checkers and even write love letters in the early 1950’s, see this New
Yorker article and this website.

Rice’s Theorem was proven in [Ric53]. It is typically stated in a
form somewhat different than what we used, see ??.

We do not discuss in the chapter the concept of recursively enumer-
able languages, but it is covered briefly in Exercise 8.10. As usual, we
use function, as opposto language, notation.

The cartoon of the Halting problem in Fig. 8.1 is copyright 2019
Charles F. Cooper.

https://github.com/adamyedidia/parsimony
https://codegolf.stackexchange.com/
https://www.newyorker.com/tech/elements/christopher-stracheys-nineteen-fifties-love-machine
https://www.newyorker.com/tech/elements/christopher-stracheys-nineteen-fifties-love-machine
http://www.alpha60.de/art/love_letters/

	II Uniform computation
	Universality and uncomputability
	Universality or a meta-circular evaluator
	Proving the existence of a universal Turing Machine
	Implications of universality (discussion)

	Is every function computable?
	The Halting problem
	Is the Halting problem really hard? (discussion)
	A direct proof of the uncomputability of HALT (optional)

	Reductions
	Example: Halting on the zero problem

	Rice's Theorem and the impossibility of general software verification
	Rice's Theorem
	Halting and Rice's Theorem for other Turing-complete models
	Is software verification doomed? (discussion)

	Exercises
	Bibliographical notes

