
Figure 6.1: Once you know how to multiply multi-
digit numbers, you can do so for every number 𝑛
of digits, but if you had to describe multiplication
using NAND-CIRC programs or Boolean circuits,
you would need a different program/circuit for every
length 𝑛 of the input.

Figure 6.2: The NAND circuit and NAND-CIRC
program for computing the XOR of 5 bits. Note how
the circuit for XOR5 merely repeats four times the
circuit to compute the XOR of 2 bits.

6
Loops and infinity

“An algorithm is a finite answer to an infinite number of
questions.”, Attributed to Stephen Kleene.

“The bounds of arithmetic were however outstepped the
moment the idea of applying the [punched] cards had
occurred; and the Analytical Engine does not occupy
common ground with mere”calculating machines.””
… In enabling mechanism to combine together general
symbols, in successions of unlimited variety and extent,
a uniting link is established between the operations of
matter and the abstract mental processes of the most ab-
stract branch of mathematical science. ”, Ada Augusta,
countess of Lovelace, 1843

The model of Boolean circuits (or equivalently, the NAND-CIRC
programming language) has one very significant drawback: a Boolean
circuit can only compute a finite function 𝑓 , and in particular since
every gate has two inputs, a size 𝑠 circuit can compute on an input
of length at most 2𝑠. This does not capture our intuitive notion of an
algorithm as a single recipe to compute a potentially infinite function.
For example, the standard elementary school multiplication algorithm
is a single algorithm that multiplies numbers of all lengths, but yet
we cannot express this algorithm as a single circuit, but rather need a
different circuit (or equivalently, a NAND-CIRC program) for every
input length (see Fig. 6.1).

Let us consider the case of the simple parity or XOR function XOR ∶
{0, 1}∗ → {0, 1}, where XOR(𝑥) equals 1 iff the number of 1’s in 𝑥
is odd. (In other words, XOR(𝑥) = ∑|𝑥|−1

𝑖=0 𝑥𝑖 mod 2 for every 𝑥 ∈
{0, 1}∗.) As simple as it is, the XOR function cannot be computed by
a NAND-CIRC program. Rather, for every 𝑛, we can compute XOR𝑛
(the restriction of XOR to {0, 1}𝑛) using a different NAND-CIRC
program. For example, Fig. 6.2 presents the NAND-CIRC program (or
equivalently the circuit) to compute XOR5.

Compiled on 10.14.2019 23:25

Learning Objectives:
• Learn the model of Turing machines, which

can compute functions of arbitrary input
lengths.

• See a programming-language description of
Turing machines, using NAND-TM programs,
which add loops and arrays to NAND-CIRC.

• See some basic syntactic sugar and
equivalence of variants of Turing machines
and NAND-TM programs.

214 introduction to theoretical computer science

Figure 6.3: An algorithm is a finite recipe to compute
on arbitrarily long inputs. The components of an
algorithm include the instructions to be performed,
finite state or “local variables”, the memory to store
the input and intermediate computations, as well as
mechanisms to decide which part of the memory to
access, and when to repeat instructions and when to
halt.

This code for computing XOR5 is rather repetitive, and more im-
portantly, does not capture the fact that there is a single algorithm to
compute the parity on all inputs. Typical programming language use
the notion of loops to express such an algorithm, along the lines of:

s is the "running parity", initialized to 0

while i<len(X):

u = NAND(s,X[i])

v = NAND(s,u)

w = NAND(X[i],u)

s = NAND(v,w)

i+= 1

Y[0] = s

Generally an algorithm is, as we quote above, “a finite answer to
an infinite number of questions”. To express an algorithm we need to
write down a finite set of instructions that will enable us to compute
on arbitrarily long inputs. To describe and execute an algorithm we
need the following components (see Fig. 6.3):

• The finite set of instructions to be performed.

• Some “local variables” or finite state used in the execution.

• A potentially unbounded working memory to store the input as
well as any other values we may require later.

• While the memory is unbounded, at every single step we can only
read and write to a finite part of it, and we need a way to adress
which are the parts we want to read from and write to.

• If we only have a finite set of instructions but our input can be
arbitrarily long, we will need to repeat instructions (i.e., loop back).
We need a mechanism to decide when we will loop and when we
will halt.

In this chapter we will show how we can extend the model of
Boolean circuits / straight-line programs so that it can capture these
kinds of constructs. We will see two ways to do so:

• Turing machines, invented by Alan Turing in 1936, are an hypothet-
ical abstract device that yields a finite description of an algorithm
that can handle arbitrarily long inputs.

• The NAND-TM Programming language extends NAND-CIRC with
the notion of loops and arrays to obtain finite programs that can
compute a function with arbitrarily long inputs.

loops and infinity 215

It turns out that these two models are equivalent, and in fact they
are equivalent to a great many other computational models including
programming languages you may be familiar with such as C, Lisp,
Python, JavaScript, etc. This notion, known as Turing equivalence or
Turing completeness, will be discussed in Chapter 7. See Fig. 6.4 for an
overview of the models presented in this chapter and Chapter 7.

Figure 6.4: Overview of our models for finite and
unbounded computation. In the previous chapters
we study the computation of finite functions, which
are functions 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 for some fixed
𝑛, 𝑚, and modeled computing these functions using
circuits or straightline programs. In this chapter we
study computing unbounded functions of the form
𝐹 ∶ {0, 1}∗ → {0, 1}𝑚 or 𝐹 ∶ {0, 1}∗ → {0, 1}∗.
We model computing these functions using Turing
Machines or (equivalently) NAND-TM programs
which add the notion of loops to the NAND-CIRC
programming language. In Chapter 7 we will show
that these models are equivalent to many other
models, including RAM machines, the 𝜆 calculus, and
all the common programming languages including C,
Python, Java, JavaScript, etc.

R
Remark 6.1 — Finite vs infinite computation. Previously
in this book we studied the computation of finite func-
tions 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚. Such a function 𝑓 can
always be described by listing all the 2𝑛 values it takes
on inputs 𝑥 ∈ {0, 1}𝑛.
In this chapter we consider functions that take
inputs of unbounded size, such as the function
XOR ∶ {0, 1}∗ → {0, 1} that maps 𝑥 to ∑|𝑥|−1

𝑖=0 𝑥𝑖
mod 2. While we can describe XOR using a finite
number of symbols (in fact we just did so in the previ-
ous sentence), it takes infinitely many possible inputs
and so we cannot just write down all of its values.
The same is true for many other functions capturing
important computational tasks including addition,
multiplication, sorting, finding paths in graphs, fitting
curves to points, and so on and so forth.
To contrast with the finite case, we will some-
times call a function 𝐹 ∶ {0, 1}∗ → {0, 1} (or
𝐹 ∶ {0, 1}∗ → {0, 1}∗) infinite but we emphasize
that the functions we are interested in always take an
input which is a finite string. It’s just that, unlike the
finite case, this string can be arbitrarily long and is not
fixed to some particular length 𝑛.
Some texts present the task of computing a func-
tion 𝐹 ∶ {0, 1}∗ → {0, 1} as the task of deciding

216 introduction to theoretical computer science

Figure 6.5: Aside from his many other achievements,
Alan Turing was an excellent long distance runner
who just fell shy of making England’s olympic team.
A fellow runner once asked him why he punished
himself so much in training. Alan said “I have such
a stressful job that the only way I can get it out of my
mind is by running hard; it’s the only way I can get
some release.”

Figure 6.6: Until the advent of electronic computers,
the word “computer” was used to describe a person
that performed calculations. Most of these “human
computers” were women, and they were absolutely
essential to many achievements including mapping
the stars, breaking the Enigma cipher, and the NASA
space mission; see also the bibliographical notes.
Photo taken from from [Sob17].

Figure 6.7: Steam-powered Turing Machine mural,
painted by CSE grad students at the University of
Washington on the night before spring qualifying
examinations, 1987. Image from https://www.cs.
washington.edu/building/art/SPTM.

membership in the language 𝐿 ⊆ {0, 1}∗ defined as
𝐿 = {𝑥 ∈ {0, 1}∗ | 𝐹 (𝑥) = 1}. These two views are
equivalent, see Remark 6.5.

6.1 TURING MACHINES

“Computing is normally done by writing certain symbols
on paper. We may suppose that this paper is divided into
squares like a child’s arithmetic book.. The behavior of
the [human] computer at any moment is determined by
the symbols which he is observing, and of his ‘state of
mind’ at that moment… We may suppose that in a simple
operation not more than one symbol is altered.”,
“We compare a man in the process of computing … to
a machine which is only capable of a finite number of
configurations… The machine is supplied with a ‘tape’
(the analogue of paper) … divided into sections (called
‘squares’) each capable of bearing a ‘symbol’ ”, Alan
Turing, 1936

“What is the difference between a Turing machine and the
modern computer? It’s the same as that between Hillary’s
ascent of Everest and the establishment of a Hilton hotel
on its peak.” , Alan Perlis, 1982.

The “granddaddy” of all models of computation is the Turing Ma-
chine. Turing machines were defined in 1936 by Alan Turing in an
attempt to formally capture all the functions that can be computed
by human “computers” (see Fig. 6.6) that follow a well-defined set of
rules, such as the standard algorithms for addition or multiplication.

Turing thought of such a person as having access to as much
“scratch paper” as they need. For simplicity we can think of this
scratch paper as a one dimensional piece of graph paper (or tape, as
it is commonly referred to), which is divided to “cells”, where each
“cell” can hold a single symbol (e.g., one digit or letter, and more
generally some element of a finite alphabet). At any point in time, the
person can read from and write to a single cell of the paper, and based
on the contents can update his/her finite mental state, and/or move to
the cell immediately to the left or right of the current one.

Turing modeled such a computation by a “machine” that maintains
one of 𝑘 states. At each point in time the machine read from its “work
tape” a single symbol from a finite alphabet Σ and use that to up-
date its state, write to tape, and possible move to an adjacent cell (see
Fig. 6.9). To compute a function 𝐹 using this machine, we initialize the
tape with the input 𝑥 ∈ {0, 1}∗ and our goal is to ensure that the tape
will contain the value 𝐹(𝑥) at the end of the computation. Specifically,

https://www.cs.washington.edu/building/art/SPTM
https://www.cs.washington.edu/building/art/SPTM

loops and infinity 217

Figure 6.8: The components of a Turing Machine. Note
how they correspond to the general components of
algorithms as described in Fig. 6.3.

a computation of a Turing Machine 𝑀 with 𝑘 states and alphabet Σ on
input 𝑥 ∈ {0, 1}∗ proceeds as follows:

• Initially the machine is at state 0 (known as the “starting state”)
and the tape is initialized to ▷, 𝑥0, … , 𝑥𝑛−1,∅,∅, …. We use the
symbol ▷ to denote the beginning of the tape, and the symbol ∅ to
denote an empty cell. We will always assume that the alphabet Σ is
a (potentially strict) superset of {▷,∅, 0, 1}.

• The location 𝑖 to which the machine points to is set to 0.

• At each step, the machine reads the symbol 𝜎 = 𝑇 [𝑖] that is in the
𝑖𝑡ℎ location of the tape, and based on this symbol and its state 𝑠
decides on:

– What symbol 𝜎′ to write on the tape
– Whether to move Left (i.e., 𝑖 ← 𝑖 − 1), Right (i.e., 𝑖 ← 𝑖 + 1), Stay

in place, or Halt the computation.
– What is going to be the new state 𝑠 ∈ [𝑘]

• The set of rules the Turing machine follows is known as its transi-
tion function.

• When the machine halts then its output is obtained by reading
off the tape from the second location (just after the ▷) onwards,
stopping at the first point where the symbol is not 0 or 1.

6.1.1 Extended example: A Turing machine for palindromes
Let PAL (for palindromes) be the function that on input 𝑥 ∈ {0, 1}∗,
outputs 1 if and only if 𝑥 is an (even length) palindrome, in the sense
that 𝑥 = 𝑤0 ⋯ 𝑤𝑛−1𝑤𝑛−1𝑤𝑛−2 ⋯ 𝑤0 for some 𝑛 ∈ ℕ and 𝑤 ∈ {0, 1}𝑛.

We now show a Turing Machine 𝑀 that computes PAL. To specify
𝑀 we need to specify (i) 𝑀 ’s tape alphabet Σ which should contain at
least the symbols 0,1, ▷ and ∅, and (ii) 𝑀 ’s transition function which
determines what action 𝑀 takes when it reads a given symbol while it
is in a particular state.

In our case, 𝑀 will use the alphabet {0, 1, ▷,∅, ×} and will have
𝑘 = 14 states. Though the states are simply numbers between 0 and
𝑘 − 1, for convenience we will give them the following labels:

State Label

0 START

1 RIGHT_0

2 RIGHT_1

3 LOOK_FOR_0

218 introduction to theoretical computer science

State Label

4 LOOK_FOR_1

5 RETURN

6 REJECT

7 ACCEPT

8 OUTPUT_0

9 OUTPUT_1

10 0_AND_BLANK

11 1_AND_BLANK

12 BLANK_AND_STOP

We describe the operation of our Turing Machine 𝑀 in words:

• 𝑀 starts in state START and will go right, looking for the first sym-
bol that is 0 or 1. If we find ∅ before we hit such a symbol then we
will move to the OUTPUT_1 state that we describe below.

• Once 𝑀 finds such a symbol 𝑏 ∈ {0, 1}, 𝑀 deletes 𝑏 from the tape
by writing the × symbol, it enters either the RIGHT_0 or RIGHT_1
mode according to the value of 𝑏 and starts moving rightwards
until it hits the first ∅ or × symbol.

• Once we find this symbol we go into the state LOOK_FOR_0 or
LOOK_FOR_1 depending on whether we were in the state RIGHT_0
or RIGHT_1 and make one left move.

• In the state LOOK_FOR_𝑏, we check whether the value on the tape is
𝑏. If it is, then we delete it by changing its value to ×, and move to
the state RETURN. Otherwise, we change to the OUTPUT_0 state.

• The RETURN state means we go back to the beginning. Specifically,
we move leftward until we hit the first symbol that is not 0 or 1, in
which case we change our state to START.

• The OUTPUT_𝑏 states mean that we are going to output the value 𝑏.
In both these states we go left until we hit ▷. Once we do so, we
make a right step, and change to the 1_AND_BLANK or 0_AND_BLANK
states respectively. In the latter states, we write the corresponding
value, and then move right and change to the BLANK_AND_STOP
state, in which we write ∅ to the tape and halt.

The above description can be turned into a table describing for each
one of the 13 ⋅ 5 combination of state and symbol, what the Turing
machine will do when it is in that state and it reads that symbol. This
table is known as the transition function of the Turing machine.

loops and infinity 219

Figure 6.9: A Turing machine has access to a tape of
unbounded length. At each point in the execution,
the machine can read a single symbol of the tape,
and based on that and its current state, write a new
symbol, update the tape, decide whether to move left,
right, stay, or halt.

6.1.2 Turing machines: a formal definition
The formal definition of Turing machines is as follows:

Definition 6.2 — Turing Machine. A (one tape) Turing machine with 𝑘
states and alphabet Σ ⊇ {0, 1, ▷,∅} is represented by a transition
function 𝛿𝑀 ∶ [𝑘] × Σ → [𝑘] × Σ × {L, R, S, H}.

For every 𝑥 ∈ {0, 1}∗, the output of 𝑀 on input 𝑥, denoted by
𝑀(𝑥), is the result of the following process:

• We initialize 𝑇 to be the sequence ▷, 𝑥0, 𝑥1, … , 𝑥𝑛−1,∅,∅, …,
where 𝑛 = |𝑥|. (That is, 𝑇 [0] = ▷, 𝑇 [𝑖 + 1] = 𝑥𝑖 for 𝑖 ∈ [𝑛], and
𝑇 [𝑖] = ∅ for 𝑖 > 𝑛.)

• We also initialize 𝑖 = 0 and 𝑠 = 0.

• We then repeat the following process:

1. Let (𝑠′, 𝜎′, 𝐷) = 𝛿𝑀(𝑠, 𝑇 [𝑖]).
2. Set 𝑠 → 𝑠′, 𝑇 [𝑖] → 𝜎′.
3. If 𝐷 = R then set 𝑖 → 𝑖+1, if 𝐷 = L then set 𝑖 → max{𝑖−1, 0}.

(If 𝐷 = S then we keep 𝑖 the same.)
4. If 𝐷 = H then halt.

• The result of the process, which we denote by 𝑀(𝑥), is the string
𝑇 [1], … , 𝑇 [𝑚] where 𝑚 > 0 is the smallest integer such that
𝑇 [𝑚 + 1] ∉ {0, 1}. If the process never ends then we write
𝑀(𝑥) = ⊥.

220 introduction to theoretical computer science

P
You should make sure you see why this formal def-
inition corresponds to our informal description of
a Turing Machine. To get more intuition on Turing
Machines, you can explore some of the online avail-
able simulators such as Martin Ugarte’s, Anthony
Morphett’s, or Paul Rendell’s.

One should not confuse the transition function 𝛿𝑀 of a Turing ma-
chine 𝑀 with the function that the machine computes. The transition
function 𝛿𝑀 is a finite function, with 𝑘|Σ| inputs and 4𝑘|Σ| outputs.
(Can you see why?) The machine can compute an infinite function 𝐹
that takes as input a string 𝑥 ∈ {0, 1}∗ of arbitrary length and might
also produce an arbitrary length string as output.

In our formal definition, we identified the machine 𝑀 with its tran-
sition function 𝛿𝑀 since the transition function tells us everything
we need to know about the Turing machine, and hence serves as a
good mathematical representation of it. This choice of representa-
tion is somewhat arbitrary, and is based on our convention that the
state space is always the numbers {0, … , 𝑘 − 1} with 0 as the starting
state. Other texts use different conventions and so their mathematical
definition of a Turing machine might look superficially different, but
these definitions describe the same computational process and has
the same computational powers. See Section 6.7 for a comparison be-
tween Definition 6.2 and the way Turing Machines are defined in texts
such as Sipser [Sip97]. These definitions are equivalent despite their
superficial differences.

6.1.3 Computable functions
We now turn to making one of the most important definitions in this
book, that of computable functions.

Definition 6.3 — Computable functions. Let 𝐹 ∶ {0, 1}∗ → {0, 1}∗ be
a (total) function and let 𝑀 be a Turing machine. We say that 𝑀
computes 𝐹 if for every 𝑥 ∈ {0, 1}∗, 𝑀(𝑥) = 𝐹(𝑥).

We say that a function 𝐹 is computable if there exists a Turing
machine 𝑀 that computes it.

Defining a function “computable” if and only if it can be computed
by a Turing machine might seem “reckless” but, as we’ll see in Chap-
ter 7, it turns out that being computable in the sense of Definition 6.3
is equivalent to being computable in essentially any reasonable model
of computation. This is known as the Church Turing Thesis. (Unlike
the extended Church Turing Thesis which we discussed in Section 5.6,

https://turingmachinesimulator.com/
http://morphett.info/turing/turing.html
http://morphett.info/turing/turing.html
http://rendell-attic.org/gol/TMapplet/index.htm

loops and infinity 221

the Church-Turing thesis itself is widely believed and there are no
candidate devices that attack it.)

 Big Idea 8 We can precisely define what it means for a function to
be computable by any possible algorithm.

This is a good point to remind the reader that functions are not the
same as programs:

Functions ≠ Programs . (6.1)

A Turing machine (or program) 𝑀 can compute some function
𝐹 , but it is not the same as 𝐹 . In particular there can be more than
one program to compute the same function. Being computable is a
property of functions, not of machines.

We will often pay special attention to functions 𝐹 ∶ {0, 1}∗ → {0, 1}
that have a single bit of output. Hence we give a special name for the
set of functions of this form that are computable.

Definition 6.4 — The class R. We define R be the set of all computable
functions 𝐹 ∶ {0, 1}∗ → {0, 1}.

R
Remark 6.5 — Functions vs. languages. Many texts use
the terminology of “languages” rather than functions
to refer to computational tasks. The name “language”
has its roots in formal language theory as pursued by
linguists such as Noam Chomsky. A formal language
is a subset 𝐿 ⊆ {0, 1}∗ (or more generally 𝐿 ⊆ Σ∗ for
some finite alphabet Σ). The membership or decision
problem for a language 𝐿, is the task of determining,
given 𝑥 ∈ {0, 1}∗, whether or not 𝑥 ∈ 𝐿. A Turing
machine 𝑀 decides a language 𝐿 if for every input
𝑥 ∈ {0, 1}∗, 𝑀(𝑥) outputs 1 if and only if 𝑥 ∈ 𝐿.
This is equivalent to computing the Boolean function
𝐹 ∶ {0, 1}∗ → {0, 1} defined as 𝐹(𝑥) = 1 iff 𝑥 ∈ 𝐿.
A language 𝐿 is decidable if there is a Turing machine
𝑀 that decides it. For historical reasons, some texts
also call such a language recursive (which is the rea-
son that the letter R is often used to denote the set of
computable Boolean functions / decidable languages
defined in Definition 6.4).
In this book we stick to the terminology of functions
rather than languages, but all definitions and results
can be easily translated back and forth by using the
equivalence between the function 𝐹 ∶ {0, 1}∗ → {0, 1}
and the language 𝐿 = {𝑥 ∈ {0, 1}∗ | 𝐹 (𝑥) = 1}.

222 introduction to theoretical computer science

1 A partial function 𝐹 from a set 𝐴 to a set 𝐵 is a
function that is only defined on a subset of 𝐴, (see
Section 1.4.3). We can also think of such a function as
mapping 𝐴 to 𝐵 ∪ {⊥} where ⊥ is a special “failure”
symbol such that 𝐹(𝑎) = ⊥ indicates the function 𝐹
is not defined on 𝑎.

6.1.4 Infinite loops and partial functions
One crucial difference between circuits/straight-line programs and
Turing machines is the following. Looking at a NAND-CIRC program
𝑃 , we can always tell how many inputs and how many outputs it has
(by simply looking at the X and Y variables). Furthermore, we are
guaranteed that if we invoke 𝑃 on any input then some output will be
produced.

In contrast, given any Turing machine 𝑀 , we cannot determine
a priori the length of the output. In fact, we don’t even know if an
output would be produced at all! For example, it is very easy to come
up with a Turing machine whose transition function never outouts H
and hence never halts.

If a machine 𝑀 fails to stop and produce an output on some an
input 𝑥, then it cannot compute any total function 𝐹 , since clearly on
input 𝑥, 𝑀 will fail to output 𝐹(𝑥). However, 𝑃 can still compute a
partial function.1

For example, consider the partial function DIV that on input a pair
(𝑎, 𝑏) of natural numbers, outputs ⌈𝑎/𝑏⌉ if 𝑏 > 0, and is undefined
otherwise. We can define a Turing machine 𝑀 that computes DIV on
input 𝑎, 𝑏 by outputting the first 𝑐 = 0, 1, 2, … such that 𝑐𝑏 ≥ 𝑎. If 𝑎 > 0
and 𝑏 = 0 then the machine 𝑀 will never halt, but this is OK, since
DIV is undefined on such inputs. If 𝑎 = 0 and 𝑏 = 0, the machine 𝑀
will output 0, which is also OK, since we don’t care about what the
program outputs on inputs on which DIV is undefined. Formally, we
define computability of partial functions as follows:

Definition 6.6 — Computable (partial or total) functions. Let 𝐹 be either a
total or partial function mapping {0, 1}∗ to {0, 1}∗ and let 𝑀 be a
Turing machine. We say that 𝑀 computes 𝐹 if for every 𝑥 ∈ {0, 1}∗

on which 𝐹 is defined, 𝑀(𝑥) = 𝐹(𝑥). We say that a (partial or
total) function 𝐹 is computable if there is a Turing machine that
computes it.

Note that if 𝐹 is a total function, then it is defined on every 𝑥 ∈
{0, 1}∗ and hence in this case, Definition 6.6 is identical to Defini-
tion 6.3.

R
Remark 6.7 — Bot symbol. We often use ⊥ as our spe-
cial “failure symbol”. If a Turing machine 𝑀 fails to
halt on some input 𝑥 ∈ {0, 1}∗ then we denote this by
𝑀(𝑥) = ⊥. This does not mean that 𝑀 outputs some
encoding of the symbol ⊥ but rather that 𝑀 enters
into an infinite loop when given 𝑥 as input.

loops and infinity 223

If a partial function 𝐹 is undefined on 𝑥 then we can
also write 𝐹(𝑥) = ⊥. Therefore one might think
that Definition 6.6 can be simplified to requiring that
𝑀(𝑥) = 𝐹(𝑥) for every 𝑥 ∈ {0, 1}∗, which would imply
that for every 𝑥, 𝑀 halts on 𝑥 if and only if 𝐹 is de-
fined on 𝑥. However this is not the case: for a Turing
Machine 𝑀 to compute a partial function 𝐹 it is not
necessary for 𝑀 to enter an infinite loop on inputs 𝑥
on which 𝐹 is not defined. All that is needed is for 𝑀
to output 𝐹(𝑥) on 𝑥’s on which 𝐹 is defined: on other
inputs it is OK for 𝑀 to output an arbitrary value such
as 0, 1, or anything else, or not to halt at all. To borrow
a term from the C programming language, on inputs 𝑥
on which 𝐹 is not defined, what 𝑀 does is “undefined
behavior”.

6.2 TURING MACHINES AS PROGRAMMING LANGUAGES

The name “Turing machine”, with its “tape” and “head” evokes a
physical object, while in contrast we think of a program as a piece
of text. But we can think of a Turing machine as a program as well.
For example, consider the Turing Machine 𝑀 of Section 6.1.1 that
computes the function PAL such that PAL(𝑥) = 1 iff 𝑥 is a palindrome.
We can also describe this machine as a program using the Python-like
pseudocode of the form below

Gets an array Tape initialized to

[">", x_0 , x_1 , , x_(n-1), "�", "�", ...]

At the end of the execution, Tape[1] is equal to 1

if x is a palindrome and is equal to 0 otherwise

def PAL(Tape):

head = 0

state = 0 # START

while (state != 12):

if (state == 0 && Tape[head]=='0'):

state = 3 # LOOK_FOR_0

Tape[head] = 'x'

head += 1 # move right

if (state==0 && Tape[head]=='1')

state = 4 # LOOK_FOR_1

Tape[head] = 'x'

head += 1 # move right

... # more if statements here

The particular details of this program are not important. What mat-
ters is that we can describe Turing machines as programs. Moreover,
note that when translating a Turing machine into a program, the tape

224 introduction to theoretical computer science

becomes a list or array that can hold values from the finite set Σ.2 The
head position can be thought of as an integer valued variable that can
hold integers of unbounded size. The state is a local register that can
hold one of a fixed number of values in [𝑘].

More generally we can think of every Turing Machine 𝑀 as equiva-
lent to a program similar to the following:

Gets an array Tape initialized to

[">", x_0 , x_1 , , x_(n-1), "�", "�", ...]

def M(Tape):

state = 0

i = 0 # holds head location

while (True):

Move head, modify state, write to tape

based on current state and cell at head

below are just examples for how program looks

for a particular transition function↪

if Tape[i]=="0" and state==7: #

δ_M(7,"0")=(19,"1","R")↪

i += 1

Tape[i]="1"

state = 19

elif Tape[i]==">" and state == 13: #

δ_M(13,">")=(15,"0","S")↪

Tape[i]="0"

state = 15

elif ...

...

elif Tape[i]==">" and state == 29: #

δ_M(29,">")=(.,.,"H")↪

break # Halt

If we wanted to use only Boolean (i.e., 0/1-valued) variables then
we can encode the state variables using ⌈log 𝑘⌉ bits. Similarly, we
can represent each element of the alphabet Σ using ℓ = ⌈log |Σ|⌉ bits
and hence we can replace the Σ-valued array Tape[] with ℓ Boolean-
valued arrays Tape0[],…, Tapeℓ[].

6.2.1 The NAND-TM Programming language
We now introduce the NAND-TM programming language, which aims
to capture the power of a Turing machine in a programming language
formalism. Just like the difference between Boolean circuits and Tur-
ing Machines, the main difference between NAND-TM and NAND-
CIRC is that NAND-TM models a single uniform algorithm that can

loops and infinity 225

compute a function that takes inputs of arbitrary lengths. To do so, we
extend the NAND-CIRC programming language with two constructs:

• Loops: NAND-CIRC is a straight-line programming language- a
NAND-CIRC program of 𝑠 lines takes exactly 𝑠 steps of computa-
tion and hence in particular cannot even touch more than 3𝑠 vari-
ables. Loops allow us to capture in a short program the instructions
for a computation that can take an arbitrary amount of time.

• Arrays: A NAND-CIRC program of 𝑠 lines touches at most 3𝑠 vari-
ables. While we can use variables with names such as Foo_17 or
Bar[22], they are not true arrays, since the number in the identifier
is a constant that is “hardwired” into the program.

Figure 6.10: A NAND-TM program has scalar variables
that can take a Boolean value, array variables that
hold a sequence of Boolean values, and a special
index variable i that can be used to index the array
variables. We refer to the i-th value of the array
variable Spam using Spam[i]. At each iteration of
the program the index variable can be incremented
or decremented by one step using the MODANDJMP
operation.

Thus a good way to remember NAND-TM is using the following
informal equation:

NAND-TM = NAND-CIRC + loops + arrays (6.2)

R
Remark 6.8 — NAND-CIRC + loops + arrays = every-
thing.. As we will see, adding loops and arrays to
NAND-CIRC is enough to capture the full power of
all programming languages! Hence we could replace
“NAND-TM” with any of Python, C, Javascript, OCaml,
etc. in the lefthand side of (6.2). But we’re getting
ahead of ourselves: this issue will be discussed in
Chapter 7.

Concretely, the NAND-TM programming language adds the fol-
lowing features on top of NANC-CIRC (see Fig. 6.10)):

• We add a special integer valued variable i. All other variables in
NAND-TM are Boolean valued (as in NAND-CIRC).

226 introduction to theoretical computer science

• Apart from i NAND-TM has two kinds of variables: scalars and
arrays. Scalar variables hold one bit (just as in NAND-CIRC). Array
variables hold an unbounded number of bits. At any point in the
computation we can access the array variables at the location in-
dexed by i using Foo[i]. We cannot access the arrays at locations
other the one pointed to by i.

• We use the convention that arrays always start with a capital letter,
and scalar variables (which are never indexed with i) start with
lowercase letters. Hence Foo is an array and bar is a scalar variable.

• The input and output X and Y are now considered arrays with val-
ues of zeroes and ones. (There are also two other special arrays
X_nonblank and Y_nonblank, see below.)

• We add a special MODANDJUMP instruction that takes two boolean
variables 𝑎, 𝑏 as input and does the following:

– If 𝑎 = 1 and 𝑏 = 1 then MODANDJUMP(𝑎, 𝑏) increments i by one
and jumps to the first line of the program.

– If 𝑎 = 0 and 𝑏 = 1 then MODANDJUMP(𝑎, 𝑏) decrements i by one
and jumps to the first line of the program. (If i is already equal
to 0 then it stays at 0.)

– If 𝑎 = 1 and 𝑏 = 0 then MODANDJUMP(𝑎, 𝑏) jumps to the first line of
the program without modifying i.

– If 𝑎 = 𝑏 = 0 then MODANDJUMP(𝑎, 𝑏) halts execution of the
program.

• TheMODANDJUMP instruction always appears in the last line of a
NAND-TM program and nowhere else.

Default values. We need one more convention to handle “default val-
ues”. Turing machines have the special symbol ∅ to indicate that tape
location is “blank” or “uninitialized”. In NAND-TM there is no such
symbol, and all variables are Boolean, containing either 0 or 1. All
variables and locations of arrays are default to 0 if they have not been
initialized to another value. To keep track of whether a 0 in an array
corresponds to a true zero or to an uninitialized cell, a programmer
can always add to an array Foo a “companion array” Foo_nonblank
and set Foo_nonblank[i] to 1 whenever the i’th location is initial-
ized. In particular we will use this convention for the input and out-
put arrays X and Y. A NAND-TM program has four special arrays X,
X_nonblank, Y, and Y_nonblank. When a NAND-TM program is exe-
cuted on input 𝑥 ∈ {0, 1}∗ of length 𝑛, the first 𝑛 cells of the array X are
initialized to 𝑥0, … , 𝑥𝑛−1 and the first 𝑛 cells of the array X_nonblank

are initialized to 1. (All uninitialized cells default to 0.) The output of

loops and infinity 227

a NAND-TM program is the string Y[0], …, Y[𝑚 − 1] where 𝑚 is the
smallest integer such that Y_nonblank[𝑚]= 0. A NAND-TM program
gets called with X and X_nonblank initialized to contain the input, and
writes to Y and Y_nonblank to produce the output.

Formally, NAND-TM programs are defined as follows:

Definition 6.9 — NAND-TM programs. A NAND-TM program consists of
a sequence of lines of the form foo = NAND(bar,blah) ending
with a line of the form MODANDJMP(foo,bar), where foo,bar,blah
are either scalar variables (sequences of letters, digits, and under-
scores) or array variables of the form Foo[i] (starting with capital
letter and indexed by i). The program has the array variables X,
X_nonblank, Y, Y_nonblank and the index variable i built in, and
can use additional array and scalar variables.

If 𝑃 is a NAND-TM program and 𝑥 ∈ {0, 1}∗ is an input then an
execution of 𝑃 on 𝑥 is the following process:

1. The arrays X and X_nonblank are initialized by X[𝑖]= 𝑥𝑖 and
X_nonblank[𝑖]= 1 for all 𝑖 ∈ [|𝑥|]. All other variables and cells
are initialized to 0. The index variable i is also initalized to 0.

2. The program is executed line by line, when the last line MODAND-
JMP(foo,bar) is executed then we do as follows:

a. If foo= 1 and bar= 0 then jump to the first line without mod-
ifying the value of i.

b. If foo= 1 and bar= 1 then increment i by one and jump to
the first line.

c. If foo= 0 and bar= 1 then decrement i by one (unless it is al-
ready zero) and jump to the first line.

d. If foo= 0 and bar= 0 then halt and output Y[0], …, Y[𝑚 − 1]
where 𝑚 is the smallest integer such that Y_nonblank[𝑚]= 0.

6.2.2 Sneak peak: NAND-TM vs Turing machines
As the name implies, NAND-TM programs are a direct implemen-
tation of Turing machines in programming language form. we will
show the equivalence below but you can already see how the compo-
nents of Turing machines and NAND-TM programs correspond to one
another:

228 introduction to theoretical computer science

Table 6.2: Turing Machine and NAND-TM analogs

Turing Machine NAND-TM program

State: single register that
takes values in [𝑘]

Scalar variables: Several variables
such as foo, bar etc.. each taking
values in {0, 1}.

Tape: One tape containing
values in a finite set Σ.
Potentially infinite but 𝑇 [𝑡]
defaults to ∅ for all locations
𝑡 that have not been
accessed.

Arrays: Several arrays such as Foo,
Bar etc.. for each such array Arr and
index 𝑗, the value of Arr at position 𝑗
is either 0 or 1. The value defaults to
0 for position that have not been
written to.

Head location: A number
𝑖 ∈ ℕ that encodes the
position of the head.

Index variable: The variable i that can
be used to access the arrays.

Accessing memory: At every
step the Turing machine has
access to its local state, but
can only access the tape at
the position of the current
head location.

Accessing memory: At every step a
NAND-TM program has access to all
the scalar variables, but can only
access the arrays at the location i of
the index variable

Control of location: In each
step the machine can move
the head location by at most
one position.

Control of index variable: In each
iteration of its main loop the
program can modify the index i by
at most one.

6.2.3 Examples
We now present some examples of NAND-TM programs

� Example 6.10 — XOR in NAND-TM. The following is a NAND-TM pro-
gram to compute the XOR function on inputs of arbitrary length.
That is XOR ∶ {0, 1}∗ → {0, 1} such that XOR(𝑥) = ∑|𝑥|−1

𝑖=0 𝑥𝑖
mod 2 for every 𝑥 ∈ {0, 1}∗.

temp_0 = NAND(X[0],X[0])

Y_nonblank[0] = NAND(X[0],temp_0)

temp_2 = NAND(X[i],Y[0])

temp_3 = NAND(X[i],temp_2)

temp_4 = NAND(Y[0],temp_2)

Y[0] = NAND(temp_3,temp_4)

MODANDJUMP(X_nonblank[i],X_nonblank[i])

loops and infinity 229

� Example 6.11 — Increment in NAND-TM. We now present NAND-TM
program to compute the increment function. That is, INC ∶ {0, 1}∗ →
{0, 1}∗ such that for every 𝑥 ∈ {0, 1}𝑛, INC(𝑥) is the 𝑛 + 1 bit long
string 𝑦 such that if 𝑋 = ∑𝑛−1

𝑖=0 𝑥𝑖 ⋅ 2𝑖 is the number represented by
𝑥, then 𝑦 is the (least-significant digit first) binary representation of
the number 𝑋 + 1.

We start by showing the program using the “syntactic sugar”
we’ve seen before of using shorthand for some NAND-CIRC pro-
grams we have seen before to compute simple functions such as
IF, XOR and AND (as well as the constant one function as well as the
function COPY that just maps a bit to itself).

carry = IF(started,carry,one(started))

started = one(started)

Y[i] = XOR(X[i],carry)

carry = AND(X[i],carry)

Y_nonblank[i] = one(started)

MODANDJUMP(X_nonblank[i],X_nonblank[i])

The above is not, strictly speaking, a valid NAND-TM program.
If we “open up” all of the syntactic sugar, we get the following
valid program to compute this syntactic sugar.

temp_0 = NAND(started,started)

temp_1 = NAND(started,temp_0)

temp_2 = NAND(started,started)

temp_3 = NAND(temp_1,temp_2)

temp_4 = NAND(carry,started)

carry = NAND(temp_3,temp_4)

temp_6 = NAND(started,started)

started = NAND(started,temp_6)

temp_8 = NAND(X[i],carry)

temp_9 = NAND(X[i],temp_8)

temp_10 = NAND(carry,temp_8)

Y[i] = NAND(temp_9,temp_10)

temp_12 = NAND(X[i],carry)

carry = NAND(temp_12,temp_12)

temp_14 = NAND(started,started)

Y_nonblank[i] = NAND(started,temp_14)

MODANDJUMP(X_nonblank[i],X_nonblank[i])

P

230 introduction to theoretical computer science

Working out the above two example can go a long
way towards understanding the NAND-TM language.
See the appendix and our GitHub repository for a full
specification of the NAND-TM language.

6.3 EQUIVALENCE OF TURING MACHINES AND NAND-TM PRO-
GRAMS

Given the above discussion, it might not be surprising that Turing
machines turn out to be equivalent to NAND-TM programs. Indeed,
we designed the NAND-TM language to have this property. Never-
theless, this is an important result, and the first of many other such
equivalence results we will see in this book.

Theorem 6.12 — Turing machines and NAND-TM programs are equivalent. For
every 𝐹 ∶ {0, 1}∗ → {0, 1}∗, 𝐹 is computable by a NAND-TM pro-
gram 𝑃 if and only if there is a Turing Machine 𝑀 that computes
𝐹 .

Proof Idea:

To prove such an equivalence theorem, we need to show two di-
rections. We need to be able to (1) transform a Turing machine 𝑀 to
a NAND-TM program 𝑃 that computes the same function as 𝑀 and
(2) transform a NAND-TM program 𝑃 into a Turing machine 𝑀 that
computes the same function as 𝑃 .

The idea of the proof is illustrated in Fig. 6.11. To show (1), given
a Turing machine 𝑀 , we will create a NAND-TM program 𝑃 that
will have an array Tape for the tape of 𝑀 and scalar (i.e., non array)
variable(s) state for the state of 𝑀 . Specifically, since the state of a
Turing machine is not in {0, 1} but rather in a larger set [𝑘], we will use
⌈log 𝑘⌉ variables state_0 , …, state_⌈log 𝑘⌉ − 1 variables to store the
representation of the state. Similarly, to encode the larger alphabet Σ
of the tape, we will use ⌈log |Σ|⌉ arrays Tape_0 , …, Tape_⌈log |Σ|⌉ − 1,
such that the 𝑖𝑡ℎ location of these arrays encodes the 𝑖𝑡ℎ symbol in the
tape for every tape. Using the fact that every function can be computed
by a NAND-CIRC program, we will be able to compute the transition
function of 𝑀 , replacing moving left and right by decrementing and
incrementing i respectively.

We show (2) using very similar ideas. Given a program 𝑃 that
uses 𝑎 array variables and 𝑏 scalar variables, we will create a Turing
machine with about 2𝑏 states to encode the values of scalar variables,
and an alphabet of about 2𝑎 so we can encode the arrays using our
tape. (The reason the sizes are only “about” 2𝑎 and 2𝑏 is that we will
need to add some symbols and steps for bookkeeping purposes.) The

http://tiny.cc/introtcsappendix
https://github.com/boazbk/tcscode

loops and infinity 231

Turing Machine 𝑀 will simulate each iteration of the program 𝑃 by
updating its state and tape accordingly.

⋆

Figure 6.11: Comparing a Turing Machine to a NAND-
TM program. Both have an unbounded memory
component (the tape for a Turing machine, and the ar-
rays for a NAND-TM program), as well as a constant
local memory (state for a Turing machine, and scalar
variables for a NAND-TM program). Both can only
access at each step one location of the unbounded
memory, this is the “head” location for a Turing
machine, and the value of the index variable i for a
NAND-TM program.

Proof of Theorem 6.12. We start by proving the “if” direction of The-
orem 6.12. Namely we show that given a Turing machine 𝑀 , we can
find a NAND-TM program 𝑃𝑀 such that for every input 𝑥, if 𝑀 halts
on input 𝑥 with output 𝑦 then 𝑃𝑀(𝑥) = 𝑦. Since our goal is just to
show such a program 𝑃𝑀 exists, we don’t need to write out the full
code of 𝑃𝑀 line by line, and can take advantage of our various “syn-
tactic sugar” in describing it.

The key observation is that by Theorem 4.12 we can compute every
finite function using a NAND-CIRC program. In particular, consider
the transition function 𝛿𝑀 ∶ [𝑘] × Σ → [𝑘] × Σ × {L, R} of our Turing
Machine. We can encode the its components as follows:

• We encode [𝑘] using {0, 1}ℓ and Σ using {0, 1}ℓ′ , where ℓ = ⌈log 𝑘⌉
and ℓ′ = ⌈log |Σ|⌉.

• We encode the set {L, R, S, H} using {0, 1}2. We will choose the
encode L ↦ 01, R ↦ 11, S ↦ 10, H ↦ 00. (This conveniently
corresponds to the semantics of the MODANDJUMP operation.)

Hence we can identify 𝛿𝑀 with a function 𝑀 ∶ {0, 1}ℓ+ℓ′ →
{0, 1}ℓ+ℓ′+2, mapping strings of length ℓ + ℓ′ to strings of length
ℓ + ℓ′ + 2. By Theorem 4.12 there exists a finite length NAND-CIRC
program ComputeM that computes this function 𝑀 . The NAND-TM
program to simulate 𝑀 will essentially be the following:

232 introduction to theoretical computer science

Algorithm 6.13 — NAND-TM program to simulate TM 𝑀 .

Input: 𝑥 ∈ {0, 1}∗

Output: 𝑀(𝑥) if 𝑀 halts on 𝑥. Otherwise go into infinite
loop

1: # We use variables state_0 … state_ℓ − 1 to encode 𝑀 ’s
state

2: # We use arrays Tape_0[] … Tape_ℓ′ − 1[] to encode 𝑀 ’s
tape

3: # We omit the initial and final ”book keeping” to copy
Input: to Tape and copy
Output: from Tape

4: # Use the fact that transition is finite and computable by
NAND-CIRC program:

5: state_0 … state_ℓ − 1, Tape_0[i]… Tape_ℓ′ − 1[i],
dir0,dir1 ← TRANSITION(state_0 … state_ℓ − 1,
Tape_0[i]… Tape_ℓ′ − 1[i], dir0,dir1)

6: MODANDJMP(dir0,dir1)

Every step of the main loop of the above program perfectly mimics
the computation of the Turing Machine 𝑀 and so the program carries
out exactly the definition of computation by a Turing Machine as per
Definition 6.2.

For the other direction, suppose that 𝑃 is a NAND-TM program
with 𝑠 lines, ℓ scalar variables, and ℓ′ array variables. We will show
that there exists a Turing machine 𝑀𝑃 with 2ℓ + 𝐶 states and alphabet
Σ of size 𝐶′ + 2ℓ′ that computes the same functions as 𝑃 (where 𝐶, 𝐶′

are some constants to be determined later).
Specifically, consider the function 𝑃 ∶ {0, 1}ℓ × {0, 1}ℓ′ → {0, 1}ℓ ×

{0, 1}ℓ′ that on input the contents of 𝑃 ’s scalar variables and the con-
tents of the array variables at location i in the beginning of an itera-
tion, outputs all the new values of these variables at the last line of the
iteration, right before the MODANDJUMP instruction is executed.

If foo and bar are the two variables that are used as input to the
MODANDJUMP instruction, then this means that based on the values of
these variables we can compute whether i will increase, decrease or
stay the same, and whether the program will halt or jump back to the
beginning. Hence a Turing machine can simulate an execution of 𝑃 in
one iteration using a finite function applied to its alphabet. The overall
operation of the Turing machine will be as follows:

1. The machine 𝑀𝑃 encodes the contents of the array variables of 𝑃
in its tape, and the contents of the scalar variables in (part of) its
state. Specifically, if 𝑃 has ℓ local variables and 𝑡 arrays, then the
state space of 𝑀 will be large enough to encode all 2ℓ assignments

loops and infinity 233

to the local variables and the alphabet Σ of 𝑀 will be large enough
to encode all 2𝑡 assignments for the array variables at each location.
The head location corresponds to the index variable i.

2. Recall that every line of the program 𝑃 corresponds to reading and
writing either a scalar variable, or an array variable at the location
i. In one iteration of 𝑃 the value of i remains fixed, and so the
machine 𝑀 can simulate this iteration by reading the values of
all array variables at i (which are encoded by the single symbol
in the alphabet Σ located at the i-th cell of the tape) , reading the
values of all scalar variables (which are encoded by the state), and
updating both. The transition function of 𝑀 can output L, S, R
depending on whether the values given to the MODANDJMP operation
are 01, 10 or 11 respectively.

3. When the program halts (i.e., MODANDJMP gets 00) then the Turing
machine will enter into a special loop to copy the results of the Y
array into the output and then halt. We can achieve this by adding a
few more states.

The above is not a full formal description of a Turing Machine, but
our goal is just to show that such a machine exists. One can see that
𝑀𝑃 simulates every step of 𝑃 , and hence computes the same function
as 𝑃 .

�

R
Remark 6.14 — Running time equivalence (optional). If
we examine the proof of Theorem 6.12 then we can
see that the every iteration of the loop of a NAND-TM
program corresponds to one step in the execution of
the Turing machine. We will come back to this ques-
tion of measuring number of computation steps later
in this course. For now the main take away point is
that NAND-TM programs and Turing Machines are
essentially equivalent in power even when taking
running time into account.

6.3.1 Specification vs implementation (again)
Once you understand the definitions of both NAND-TM programs
and Turing Machines, Theorem 6.12 is fairly straightforward. Indeed,
NAND-TM programs are not as much a different model from Turing
Machines as they are simply a reformulation of the same model using
programming language notation. You can think of the difference be-
tween a Turing machine and a NAND-TM program as the difference
between representing a number using decimal or binary notation. In

234 introduction to theoretical computer science

contrast, the difference between a function 𝐹 and a Turing machine
that computes 𝐹 is much more profound: it is like the difference be-
tween the equation 𝑥2 + 𝑥 = 12 and the number 3 that is a solution
for this equation. For this reason, while we take special care in distin-
guishing functions from programs or machines, we will often identify
the two latter concepts. We will move freely between describing an
algorithm as a Turing machine or as a NAND-TM program (as well
as some of the other equivalent computational models we will see in
Chapter 7 and beyond).

Table 6.3: Specification vs Implementation formalisms

Setting Specification Implementation

Finite com-
putation

Functions mapping {0, 1}𝑛 to
{0, 1}𝑚

Circuits, Straightline
programs

Infinite
computa-
tion

Functions mapping {0, 1}∗ to
{0, 1} or to {0, 1}∗.

Algorithms, Turing
Machines, Programs

6.4 NAND-TM SYNTACTIC SUGAR

Just like we did with NAND-CIRC in Chapter 4, we can use “syntactic
sugar” to make NAND-TM programs easier to write. For starters, we
can use all of the syntactic sugar of NAND-CIRC, and so have access
to macro definitions and conditionals (i.e., if/then). But we can go
beyond this and achieve for example:

• Inner loops such as the while and for operations commong to
many programming language.s

• Multiple index variables (e.g., not just i but we can add j, k, etc.).

• Arrays with more than one dimension (e.g., Foo[i][j],
Bar[i][j][k] etc.)

In all of these cases (and many others) we can implement the new
feature as mere “syntactic sugar” on top of standard NAND-TM,
which means that the set of functions computable by NAND-TM
with this feature is the same as the set of functions computable by
standard NAND-TM. Similarly, we can show that the set of functions
computable by Turing Machines that have more than one tape, or
tapes of more dimensions than one, is the same as the set of functions
computable by standard Turing machines.

loops and infinity 235

6.4.1 “GOTO” and inner loops
We can implement more advanced looping constructs than the simple
MODANDJUMP. For example, we can implement GOTO. A GOTO statement
corresponds to jumping to a certain line in the execution. For example,
if we have code of the form

"start": do foo

GOTO("end")

"skip": do bar

"end": do blah

then the program will only do foo and blah as when it reaches the
line GOTO("end") it will jump to the line labeled with "end". We can
achieve the effect of GOTO in NAND-TM using conditionals. In the
code below, we assume that we have a variable pc that can take strings
of some constant length. This can be encoded using a finite number
of Boolean variables pc_0, pc_1, …, pc_𝑘 − 1, and so when we write
below pc = "label" what we mean is something like pc_0 = 0,pc_1
= 1, … (where the bits 0, 1, … correspond to the encoding of the finite
string "label" as a string of length 𝑘). We also assume that we have
access to conditional (i.e., if statements), which we can emulate using
syntactic sugar in the same way as we did in NAND-CIRC.

To emulate a GOTO statement, we will first modify a program P of
the form

do foo

do bar

do blah

to have the following form (using syntactic sugar for if):

pc = "line1"

if (pc=="line1"):

do foo

pc = "line2"

if (pc=="line2"):

do bar

pc = "line3"

if (pc=="line3"):

do blah

These two programs do the same thing. The variable pc cor-
responds to the “program counter” and tells the program which
line to execute next. We can see that if we wanted to emulate a
GOTO("line3") then we could simply modify the instruction pc =

"line2" to be pc = "line3".

236 introduction to theoretical computer science

In NAND-CIRC we could only have GOTOs that go forward in the
code, but since in NAND-TM everything is encompassed within a
large outer loop, we can use the same ideas to implement GOTO’s that
can go backwards, as well as conditional loops.

Other loops. Once we have GOTO, we can emulate all the standard loop
constructs such as while, do .. until or for in NAND-TM as well.
For example, we can replace the code

while foo:

do blah

do bar

with

"loop":

if NOT(foo): GOTO("next")

do blah

GOTO("loop")

"next":

do bar

R
Remark 6.15 — GOTO’s in programming languages. The
GOTO statement was a staple of most early program-
ming languages, but has largely fallen out of favor and
is not included in many modern languages such as
Python, Java, Javascript. In 1968, Edsger Dijsktra wrote a
famous letter titled “Go to statement considered harm-
ful.” (see also Fig. 6.12). The main trouble with GOTO
is that it makes analysis of programs more difficult
by making it harder to argue about invariants of the
program.
When a program contains a loop of the form:

for j in range(100):
do something

do blah

you know that the line of code do blah can only be
reached if the loop ended, in which case you know
that j is equal to 100, and might also be able to argue
other properties of the state of the program. In con-
trast, if the program might jump to do blah from any
other point in the code, then it’s very hard for you as
the programmer to know what you can rely upon in
this code. As Dijkstra said, such invariants are impor-
tant because “our intellectual powers are rather geared
to master static relations and .. our powers to visualize
processes evolving in time are relatively poorly developed”

https://goo.gl/bnNsjo
https://goo.gl/bnNsjo

loops and infinity 237

Figure 6.12: XKCD’s take on the GOTO statement.

and so “we should … do …our utmost best to shorten the
conceptual gap between the static program and the dynamic
process.”
That said, GOTO is still a major part of lower level lan-
guages where it is used to implement higher level
looping constructs such as while and for loops.
For example, even though Java doesn’t have a GOTO
statement, the Java Bytecode (which is a lower level
representation of Java) does have such a statement.
Similarly, Python bytecode has instructions such as
POP_JUMP_IF_TRUE that implement the GOTO function-
ality, and similar instructions are included in many
assembly languages. The way we use GOTO to imple-
ment a higher level functionality in NAND-TM is
reminiscent of the way these various jump instructions
are used to implement higher level looping constructs.

6.5 UNIFORMITY, AND NAND VS NAND-TM (DISCUSSION)

While NAND-TM adds extra operations over NAND-CIRC, it is not
exactly accurate to say that NAND-TM programs or Turing machines
are “more powerful” than NAND-CIRC programs or Boolean circuits.
NAND-CIRC programs, having no loops, are simply not applicable
for computing functions with an unbounded number of inputs. Thus,
to compute a function 𝐹 ∶ {0, 1}∗ ∶→ {0, 1}∗ using NAND-CIRC (or
equivalently, Boolean circuits) we need a collection of programs/cir-
cuits: one for every input length.

The key difference between NAND-CIRC and NAND-TM is that
NAND-TM allows us to express the fact that the algorithm for com-
puting parities of length-100 strings is really the same one as the al-
gorithm for computing parities of length-5 strings (or similarly the
fact that the algorithm for adding 𝑛-bit numbers is the same for every
𝑛, etc.). That is, one can think of the NAND-TM program for general
parity as the “seed” out of which we can grow NAND-CIRC programs
for length 10, length 100, or length 1000 parities as needed.

This notion of a single algorithm that can compute functions of
all input lengths is known as uniformity of computation and hence
we think of Turing machines / NAND-TM as uniform model of com-
putation, as opposed to Boolean circuits or NAND-CIRC which is a
nonuniform model, where we have to specify a different program for
every input length.

Looking ahead, we will see that this uniformity leads to another
crucial difference between Turing machines and circuits. Turing ma-
chines can have inputs and outputs that are longer than the descrip-
tion of the machine as a string and in particular there exists a Turing
machine that can “self replicate” in the sense that it can print its own

238 introduction to theoretical computer science

code. This notion of “self replication”, and the related notion of “self
reference” is crucial to many aspects of computation, as well of course
to life itself, whether in the form of digital or biological programs.

For now, what you ought to remember is the following differences
between uniform and non uniform computational models:

• Non uniform computational models: Examples are NAND-CIRC
programs and Boolean circuits. These are models where each indi-
vidual program/circuit can compute a finite function 𝑓 ∶ {0, 1}𝑛 →
{0, 1}𝑚. We have seen that every finite function can be computed by
some program/circuit. To discuss computation of an infinite func-
tion 𝐹 ∶ {0, 1}∗ → {0, 1}∗ we need to allow a sequence {𝑃𝑛}𝑛∈ℕ of
programs/circuits (one for every input length), but this does not
capture the notion of a single algorithm to compute the function 𝐹 .

• Uniform computational models: Examples are Turing machines and
NAND-TM programs. These are model where a single program/-
machine can take inputs of arbitrary length and hence compute an
infinite function 𝐹 ∶ {0, 1}∗ → {0, 1}∗. The number of steps that
a program/machine takes on some input is not a priori bounded
in advance and in particular there is a chance that it will enter into
an infinite loop. Unlike the nonuniform case, we have not shown
that every infinite function can be computed by some NAND-TM
program/Turing Machine. We will come back to this point in Chap-
ter 8.

✓ Lecture Recap

• Turing machines capture the notion of a single al-
gorithm that can evaluate functions of every input
length.

• They are equivalent to NAND-TM programs, which
add loops and arrays to NAND-CIRC.

• Unlike NAND-CIRC or Boolean circuits, the num-
ber of steps that a Turing machine takes on a given
input is not fixed in advance. In fact, a Turing ma-
chine or a NAND-TM program can enter into an
infinite loop on certain inputs, and not halt at all.

6.6 EXERCISES

Exercise 6.1 — Explicit NAND TM programming. Produce the code of a
(syntactic-sugar free) NAND-TM program 𝑃 that computes the (un-
bounded input length) Majority function 𝑀𝑎𝑗 ∶ {0, 1}∗ → {0, 1} where
for every 𝑥 ∈ {0, 1}∗, 𝑀𝑎𝑗(𝑥) = 1 if and only if ∑|𝑥|

𝑖=0 𝑥𝑖 > |𝑥|/2. We
say “produce” rather than “write” because you do not have to write

loops and infinity 239

the code of 𝑃 by hand, but rather can use the programming language
of your choice to compute this code.

�

Exercise 6.2 — Computable functions examples. Prove that the following
functions are computable. For all of these functions, you do not have
to fully specify the Turing Machine or the NAND-TM program that
computes the function, but rather only prove that such a machine or
program exists:

1. INC ∶ {0, 1}∗ → {0, 1} which takes as input a representation of a
natural number 𝑛 and outputs the representation of 𝑛 + 1.

2. ADD ∶ {0, 1}∗ → {0, 1} which takes as input a representation of
a pair of natural numbers (𝑛, 𝑚) and outputs the representation of
𝑛 + 𝑚.

3. MULT ∶ {0, 1}∗ → {0, 1}∗, which takes a representation of a pair of
natural numbers (𝑛, 𝑚) and outputs the representation of 𝑛�̇�.

4. SORT ∶ {0, 1}∗ → {0, 1}∗ which takes as input the representation of
a list of natural numbers (𝑎0, … , 𝑎𝑛−1) and returns its sorted version
(𝑏0, … , 𝑏𝑛−1) such that for every 𝑖 ∈ [𝑛] there is some 𝑗 ∈ [𝑛] with
𝑏𝑖 = 𝑎𝑗 and 𝑏0 ≤ 𝑏1 ≤ ⋯ ≤ 𝑏𝑛−1.

�

Exercise 6.3 — Two index NAND-TM. Define NAND-TM’ to be the variant of
NAND-TM where there are two index variables i and j. Arrays can be
indexed by either i or j. The operation MODANDJMP takes four variables
𝑎, 𝑏, 𝑐, 𝑑 and uses the values of 𝑐, 𝑑 to decide whether to increment j,
decrement j or keep it in the same value (corresponding to 01, 10, and
00 respectively). Prove that for every function 𝐹 ∶ {0, 1}∗ → {0, 1}∗, 𝐹
is computable by a NAND-TM program if and only if 𝐹 is computable
by a NAND-TM’ program.

�

Exercise 6.4 — Two tape Turing machines. Define a two tape Turing machine
to be a Turing machine which has two separate tapes and two separate
heads. At every step, the transition function gets as input the location
of the cells in the two tapes, and can decide whether to move each
head independently. Prove that for every function 𝐹 ∶ {0, 1}∗ →
{0, 1}∗, 𝐹 is computable by a standard Turing Machine if and only if 𝐹
is computable by a two-tape Turing machine.

�

Exercise 6.5 — Two dimensional arrays. Define NAND-TM” to be the vari-
ant of NAND-TM where just like NAND-TM’ defined in Exercise 6.3

240 introduction to theoretical computer science

3 You can use the sequence R, L,R, R, L, L, R,R,R, L, L, L,
….

there are two index variables i and j, but now the arrays are two di-
mensional and so we index an array Foo by Foo[i][j]. Prove that for
every function 𝐹 ∶ {0, 1}∗ → {0, 1}∗, 𝐹 is computable by a NAND-TM
program if and only if 𝐹 is computable by a NAND-TM” program.

�

Exercise 6.6 — Two tape Turing machines. Define a two-dimensional Turing
machine to be a Turing machine in which the tape is two dimensional.
At every step the machine can move Up, Down, Left, Right, or Stay.
Prove that for every function 𝐹 ∶ {0, 1}∗ → {0, 1}∗, 𝐹 is computable
by a standard Turing Machine if and only if 𝐹 is computable by a two-
dimensional Turing machine.

�

Exercise 6.7 Prove the following closure properties of the set R defined
in Definition 6.4:

1. If 𝐹 ∈ R then the function 𝐺(𝑥) = 1 − 𝐹(𝑥) is in R.

2. If 𝐹, 𝐺 ∈ R then the function 𝐻(𝑥) = 𝐹(𝑥) ∨ 𝐺(𝑥) is in R.

3. If 𝐹 ∈ R then the function 𝐹 ∗ in in R where 𝐹 ∗ is defined as fol-
lows: 𝐹 ∗(𝑥) = 1 iff there exist some strings 𝑤0, … , 𝑤𝑘−1 such that
𝑥 = 𝑤0𝑤1 ⋯ 𝑤𝑘−1 and 𝐹(𝑤𝑖) = 1 for every 𝑖 ∈ [𝑘].

4. If 𝐹 ∈ R then the function

𝐺(𝑥) =
⎧{
⎨{⎩

∃𝑦∈{0,1}|𝑥|𝐹(𝑥𝑦) = 1
0 otherwise

(6.3)

is in R.

�

Exercise 6.8 — Oblivious Turing Machines (challenging). Define a Turing Ma-
chine 𝑀 to be oblivious if its head movement are independent of its
input. That is, we say that 𝑀 is oblivious if there existe an infinite
sequence MOVE ∈ {L, R, S}∞ such that for every 𝑥 ∈ {0, 1}∗, the
movements of 𝑀 when given input 𝑥 (up until the point it halts, if
such point exists) are given by MOVE0,MOVE1,MOVE2, ….

Prove that for every function 𝐹 ∶ {0, 1}∗ → {0, 1}∗, if 𝐹 is com-
putable then it is computable by an oblivious Turing machine. See
footnote for hint.3

�

Exercise 6.9 — Single vs multiple bit. Prove that for every 𝐹 ∶ {0, 1}∗ →
{0, 1}∗, the function 𝐹 is computable if and only if the following func-

loops and infinity 241

tion 𝐺 ∶ {0, 1}∗ → {0, 1} is computable, where 𝐺 is defined as follows:

𝐺(𝑥, 𝑖, 𝜎) =
⎧{{
⎨{{⎩

𝐹(𝑥)𝑖 𝑖 < |𝐹(𝑥)|, 𝜎 = 0
1 𝑖 < |𝐹(𝑥)|, 𝜎 = 1
0 𝑖 ≥ |𝐹(𝑥)|

�

Exercise 6.10 — Uncomputability via counting. Recall that R is the set of all
total functions from {0, 1}∗ to {0, 1} that are computable by a Turing
machine (see Definition 6.4). Prove that R is countable. That is, prove
that there exists a one-to-one map 𝐷𝑡𝑁 ∶ R → ℕ. You can use the
equivalence between Turing machines and NAND-TM programs.

�

Exercise 6.11 — Not every function is computable. Prove that the set of all
total functions from {0, 1}∗ → {0, 1} is not countable. You can use the
results of Section 2.3.1. (We will see an explicit uncomputable function
in Chapter 8.)

�

6.7 BIBLIOGRAPHICAL NOTES

Augusta Ada Byron, countess of Lovelace (1815-1852) lived a short
but turbulent life, though is today most well known for her collabo-
ration with Charles Babbage (see [Ste87] for a biography). Ada took
an immense interest in Babbage’s analytical engine, which we men-
tioned in Chapter 3. In 1842-3, she translated from Italian a paper of
Menabrea on the engine, adding copious notes (longer than the paper
itself). The quote in the chapter’s beginning is taken from Nota A in
this text. Lovelace’s notes contain several examples of programs for the
analytical engine, and because of this she has been called “the world’s
first computer programmer” though it is not clear whether they were
written by Lovelace or Babbage himself [Hol01]. Regardless, Ada was
clearly one of very few people (perhaps the only one outside of Bab-
bage himself) to fully appreciate how significant and revolutionary
the idea of mechanizing computation truly is.

The books of Shetterly [She16] and Sobel [Sob17] discuss the his-
tory of human computers (who were female, more often than not)
and their important contributions to scientific discoveries in astron-
omy and space exploration.

Alan Turing was one of the intellectual giants of the 20th century.
He was not only the first person to define the notion of computation,
but also invented and used some of the world’s earliest computational
devices as part of the effort to break the Enigma cipher during World
War II, saving millions of lives. Tragically, Turing committed suicide
in 1954, following his conviction in 1952 for homosexual acts and a
court-mandated hormonal treatment. In 2009, British prime minister

https://goo.gl/KY1bJN

242 introduction to theoretical computer science

Gordon Brown made an official public apology to Turing, and in 2013
Queen Elizabeth II granted Turing a posthumous pardon. Turing’s life
is the subject of a great book and a mediocre movie.

Sipser’s text [Sip97] defines a Turing machine as a seven tuple con-
sisting of the state space, input alphabet, tape alphabet, transition
function, starting state, accpeting state, and rejecting state. Superfi-
cially this looks like a very different definition than Definition 6.2 but
it is simply a different representation of the same concept, just as a
graph can be represented in either adjacency list or adjacency matrix
form.

One difference is that Sipser considers a general set of states 𝑄 that
is not necessarily of the form 𝑄 = {0, 1, 2, … , 𝑘 − 1} for some natural
number 𝑘 > 0. Sipser also restricts his attention to Turing machines
that output only a single bit and therefore designates two special halt-
ing states: the “0 halting state” (often known as the rejecting state) and
the other as the “1 halting state” (often known as the accepting state).
Thus instead of writing 0 or 1 on an output tape, the machine will en-
ter into one of these states and halt. This again makes no difference
to the computational power, though we prefer to consider the more
general model of multi-bit outputs. (Sipser presents the basic task of a
Turing machine as that of deciding a language as opposed to computing
a function, but these are equivalent, see Remark 6.5.)

Sipser considers also functions with input in Σ∗ for an arbitrary
alphabet Σ (and hence distinguishes between the input alphabet which
he denotes as Σ and the tape alphabet which he denotes as Γ), while we
restrict attention to functions with binary strings as input. Again this
is not a major issue, since we can always encode an element of Σ using
a binary string of length log⌈|Σ|⌉. Finally (and this is a very minor
point) Sipser requires the machine to either move left or right in every
step, without the Stay operation, though staying in place is very easy
to emulate by simply moving right and then back left.

Another definition used in the literature is that a Turing machine
𝑀 recognizes a language 𝐿 if for every 𝑥 ∈ 𝐿, 𝑀(𝑥) = 1 and for
every 𝑥 ∉ 𝐿, 𝑀(𝑥) ∈ {0, ⊥}. A language 𝐿 is recursively enumerable if
there exists a Turing machine 𝑀 that recognizes it, and the set of all
recursively enumerable languages is often denoted by RE. We will not
use this terminology in this book.

One of the first programming-language formulations of Turing
machines was given by Wang [Wan57]. Our formulation of NAND-
TM is aimed at making the connection with circuits more direct, with
the eventual goal of using it for the Cook-Levin Theorem, as well as
results such as P ⊆ P/poly and BPP ⊆ P/poly. The website esolangs.org
features a large variety of esoteric Turing-complete programming
languages. One of the most famous of them is Brainf*ck.

https://goo.gl/3GdFdp
https://goo.gl/EtQvSu
https://esolangs.org
https://esolangs.org/wiki/Brainfuck

	II Uniform computation
	Loops and infinity
	Turing Machines
	Extended example: A Turing machine for palindromes
	Turing machines: a formal definition
	Computable functions
	Infinite loops and partial functions

	Turing machines as programming languages
	The NAND-TM Programming language
	Sneak peak: NAND-TM vs Turing machines
	Examples

	Equivalence of Turing machines and NAND-TM programs
	Specification vs implementation (again)

	NAND-TM syntactic sugar
	``GOTO'' and inner loops

	Uniformity, and NAND vs NAND-TM (discussion)
	Exercises
	Bibliographical notes

