
5
Code as data, data as code

“The term code script is, of course, too narrow. The chro-
mosomal structures are at the same time instrumental in
bringing about the development they foreshadow. They
are law-code and executive power - or, to use another
simile, they are architect’s plan and builder’s craft - in
one.” , Erwin Schrödinger, 1944.

“A mathematician would hardly call a correspondence
between the set of 64 triples of four units and a set of
twenty other units,”universal“, while such correspon-
dence is, probably, the most fundamental general feature
of life on Earth”, Misha Gromov, 2013

A program is simply a sequence of symbols, each of which can be
encoded as a string of 0’s and 1’s using (for example) the ASCII stan-
dard. Therefore we can represent every NAND-CIRC program (and
hence also every Boolean circuit) as a binary string. This statement
seems obvious but it is actually quite profound. It means that we can
treat circuits or NAND-CIRC programs both as instructions to car-
rying computation and also as data that could potentially be used as
inputs to other computations.

 Big Idea 6 A program is a piece of text, and so it can be fed as input
to other programs.

This correspondence between code and data is one of the most fun-
damental aspects of computing. It underlies the notion of general pur-
pose computers, that are not pre-wired to compute only one task, and
also forms the basis of our hope for obtaining general artificial intelli-
gence. This concept finds immense use in all areas of computing, from
scripting languages to machine learning, but it is fair to say that we
haven’t yet fully mastered it. Many security exploits involve cases such
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Learning Objectives:
• See one of the most important concepts in

computing: duality between code and data.
• Build up comfort in moving between

different representations of programs.
• Follow the construction of a “universal circuit

evaluator” that can evaluate other circuits
given their representation.

• See major result that complements the result
of the last chapter: some functions require an
exponential number of gates to compute.

• Discussion of Physical extended
Church-Turing thesis stating that Boolean
circuits capture all feasible computation in
the physical world, and its physical and
philosophical implications.
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Figure 5.1: As illustrated in this xkcd cartoon, many
exploits, including buffer overflow, SQL injections,
and more, utilize the blurry line between “active
programs” and “static strings”.

as “buffer overflows” when attackers manage to inject code where
the system expected only “passive” data (see Fig. 5.1). The relation
between code and data reaches beyond the realm of electronic com-
puters. For example, DNA can be thought of as both a program and
data (in the words of Schrödinger, who wrote before DNA’s discovery
a book that inspired Watson and Crick, DNA is both “architect’s plan
and builder’s craft”).

In this chapter, we will begin to explore some of the applications of
this connection. We start by using the representation of program-
s/circuits as strings to count the number of programs/circuits up
to a certain size, and use that to obtain a counterpart to the result
we proved in Chapter 4. There we proved that for every function
𝑓 ∶ {0, 1}𝑛 → {0, 1}, there exists a circuit of at most 100 ⋅ 2𝑛/𝑛 gates
to compute it. (The number 100 here is somewhat arbitrary and fixed
for concreteness; Theorem 4.16 states a bound of 𝑐 ⋅ 2𝑛/𝑛 for some
constant 𝑐, but it can be verified that the proof yields 𝑐 ≤ 100.) In this
chapter we will prove that there are some functions 𝑓 ∶ {0, 1}𝑛 → {0, 1}
for which we cannot do much better: they require a circuit of size at
least 0.01 ⋅ 2𝑛/𝑛 (see Theorem 5.3). We will also use the notion of
representing programs/circuits as strings to show the existence of a
bounded universal circuit 𝑈 that gets as input the string representation
of another circuit 𝐶 and a string 𝑥, and outputs 𝐶(𝑥). (The qualifier
“bounded” means that the circuit 𝐶 has to be of at most a certain
size; we see computational models that overcome this limitation in
Chapter 6, which introduces the notion of programming languages
with loops and the computational model of a Turing Machine.) Equiva-
lently, taking the programming-language point of view, the bounded
universal circuit corresponds to a “NAND-CIRC interpreter in NAND-
CIRC”: a NAND-CIRC program that can evaluate other NAND-CIRC
program. Such a program is known in Computer Science as a “meta-
circular evaluator”, and is fundamental to both theory and practice of
computing. See Fig. 5.2 for an overview of the results of this chapter.

5.1 REPRESENTING PROGRAMS AS STRINGS
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Figure 5.2: Overview of the results in this chapter.
We use the representation of programs/circuits as
strings to derive two main results. First we show
the existence of a universal program/circuit, and
in fact (with more work) the existence of such a
program/circuit whose size is at most polynomial in
the size of the program/circuit it evaluates. We then
use the string representation to count the number
of programs/circuits of a given size, and use that to
establish that some functions require an exponential
number of lines/gates to compute.

Figure 5.3: In the Harvard Mark I computer, a pro-
gram was represented as a list of triples of numbers,
which were then encoded by perforating holes in a
control card.

We can represent programs or circuits as strings in a myriad of
ways. For example, since Boolean circuits are labeled directed acyclic
graphs, we can use the adjacency matrix or adjacency list representations
for them. However, since the code of a program is ultimately just a
sequence of letters and symbols, arguably the conceptually simplest
representation of a program is as such a sequence. For example, the
following NAND-CIRC program 𝑃

temp_0 = NAND(X[0],X[1])

temp_1 = NAND(X[0],temp_0)

temp_2 = NAND(X[1],temp_0)

Y[0] = NAND(temp_1,temp_2)

is simply a string of 107 symbols which include lower and upper
case letters, digits, the underscore character _ and equality sign =,
punctuation marks such as “(”,“)”,“,”, spaces, and “new line” mark-
ers (often denoted as “\n” or “↵”). Each such symbol can be encoded
as a string of 7 bits using the ASCII encoding, and hence the program
𝑃 can be encoded as a string of length 7 ⋅ 107 = 749 bits.

Nothing in the above discussion was specific to the program 𝑃 , and
hence we can use the same reasoning to prove that every NAND-CIRC
program can be represented as a string in {0, 1}∗. In fact, we can do a
bit better. Since the names of the working variables of a NAND-CIRC
program do not effect its functionality, we can always transform a pro-
gram to have the form of 𝑃 ′ where all variables apart from the inputs
and outputs have the form temp_0, temp_1, temp_2, etc.. Moreover,
if the program has 𝑠 lines, then we will never need to use an index
larger than 3𝑠 (since each line involves at most three variables), and
similarly the indices of the input and output variables will all be at
most 3𝑠. Since a number between 0 and 3𝑠 can be expressed using
at most ⌈log10(3𝑠 + 1)⌉ = 𝑂(log 𝑠) digits, each line in the program
(which has the form foo = NAND(bar,blah)), can be represented

https://en.wikipedia.org/wiki/ASCII
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1 The implicit constant in the 𝑂(⋅) notation is smaller
than 10. That is, for all sufficiently large 𝑠, |SIZE(𝑠)| <
210𝑠 log 𝑠, see Remark 5.4. As discussed in ??, we use
the bound 10 simply because it is a round number.

using 𝑂(1) + 𝑂(log 𝑠) = 𝑂(log 𝑠) symbols, each of which can be rep-
resented by 7 bits. Hence an 𝑠 line program can be represented as a
string of 𝑂(𝑠 log 𝑠) bits, resulting in the following theorem:

Theorem 5.1 — Representing programs as strings. There is a constant 𝑐
such that for 𝑓 ∈ SIZE(𝑠), there exists a program 𝑃 computing 𝑓
that whose string representation has length at most 𝑐𝑠 log 𝑠.

P
We omit the formal proof of Theorem 5.1 but please
make sure that you understand why it follows from
the reasoning above.

5.2 COUNTING PROGRAMS, AND LOWER BOUNDS ON THE SIZE
OF NAND-CIRC PROGRAMS

One consequence of the representation of programs as strings is that
the number of programs of certain length is bounded by the number
of strings that represent them. This has consequences for the sets
SIZE(𝑠) that we defined in Section 4.6.

Theorem 5.2 — Counting programs. For every 𝑠 ∈ ℕ,

|SIZE(𝑠)| ≤ 2𝑂(𝑠 log 𝑠). (5.1)

That is, there are at most 2𝑂(𝑠 log 𝑠) functions computed by NAND-
CIRC programs of at most 𝑠 lines. 1

Proof. We will show a one-to-one map 𝐸 from SIZE(𝑠) to the set of
strings of length 𝑐𝑠 log 𝑠 for some constant 𝑐. This will conclude the
proof, since it implies that |SIZE(𝑠) is smaller than the size of the set of
all strings of length at most ℓ, which equals 1+2+4+⋯+2ℓ = 2ℓ+1 −1
by the formula for sums of geometric progressions.

The map 𝐸 will simply map 𝑓 to the representation of the program
computing 𝑓 . Specifically, we let 𝐸(𝑓) be the representation of the
program 𝑃 computing 𝑓 given by Theorem 5.1. This representation
has size at most 𝑐𝑠 log 𝑠, and moreover the map 𝐸 is one to one, since
if 𝑓 ≠ 𝑓 ′ then every two programs computing 𝑓 and 𝑓 ′ respectively
must have different representations.

�

A function mapping {0, 1}2 to {0, 1} can be identified with the
table of its four values on the inputs 00, 01, 10, 11. A function mapping
{0, 1}3 to {0, 1} can be identified with the table of its eight values on
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2 “Astronomical” here is an understatement: there are
much fewer than 2210 stars, or even particles, in the
observable universe.

3 The constant 𝛿 is at least 0.1 and in fact, can be im-
proved to be arbitrarily close to 1/2, see Exercise 5.7.

the inputs 000, 001, 010, 011, 100, 101, 110, 111. More generally, every
function 𝐹 ∶ {0, 1}𝑛 → {0, 1} can be identified with the table of its 2𝑛

values on the inputs {0, 1}𝑛. Hence the number of functions mapping
{0, 1}𝑛 to {0, 1} is equal to the number of such tables which (since
we can choose either 0 or 1 for every row) is exactly 22𝑛 . Note that
this is double exponential in 𝑛, and hence even for small values of 𝑛
(e.g., 𝑛 = 10) the number of functions from {0, 1}𝑛 to {0, 1} is truly
astronomical.2 This has the following important corollary:

Theorem 5.3 — Counting argument lower bound. There is a constant
𝛿 > 0, such that for every sufficiently large 𝑛, there is a function
𝑓 ∶ {0, 1}𝑛 → {0, 1} such that 𝑓 ∉ SIZE ( 𝛿2𝑛

𝑛 ). That is, the shortest
NAND-CIRC program to compute 𝐹 requires at least 𝛿 ⋅ 2𝑛/𝑛 lines.
3

Proof. The proof is simple. If we let 𝑐 be the constant such that
|SIZE(𝑠)| ≤ 2𝑐𝑠 log 𝑠 and 𝛿 = 1/𝑐, then setting 𝑠 = 𝛿2𝑛/𝑛 we see that

|SIZE( 𝛿𝑛
𝑛 )| ≤ 2𝑐 𝛿2𝑛

𝑛 log 𝑠 < 2𝑐𝛿2𝑛 = 22𝑛 (5.2)

using the fact that since 𝑠 < 2𝑛, log 𝑠 < 𝑛. But since |SIZE(𝑠) is smaller
than the total number of functions mapping 𝑛 bits to 1 bit, there must
be at least one such function not in SIZE(𝑠), which is what we needed
to prove.

�

We have seen before that every function mapping {0, 1}𝑛 to {0, 1}
can be computed by an 𝑂(2𝑛/𝑛) line program. Theorem 5.3 shows
that this is tight in the sense that some functions do require such an
astronomical number of lines to compute.

 Big Idea 7 Some functions 𝑓 ∶ {0, 1}𝑛 → {0, 1} cannot be computed
by a Boolean circuit using a fewer than exponential number of gates.

In fact, as we explore in the exercises, this is the case for most func-
tions. Hence functions that can be computed in a small number of
lines (such as addition, multiplication, finding short paths in graphs,
or even the EVAL function) are the exception, rather than the rule.

R
Remark 5.4 — More efficient representation (advanced,
optional). The ASCII representation is not the shortest
representation for NAND-CIRC programs. NAND-
CIRC programs are equivalent to circuits with NAND
gates, which means that a NAND-CIRC program of 𝑠
lines, 𝑛 inputs, and 𝑚 outputs can be represented by
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Figure 5.4: We prove Theorem 5.5 by coming up
with a list 𝑓0, … , 𝑓2𝑛 of functions such that 𝑓0 is the
all zero function, 𝑓2𝑛 is a function (obtained from
Theorem 5.3) outside of SIZE(0.1 ⋅ 2𝑛/𝑛) and such
that 𝑓𝑖−1 and 𝑓𝑖 differ by one another on at most
one input. We can show that for every 𝑖, the number
of gates to compute 𝑓𝑖 is most 10𝑛 larger than the
number of gates to compute 𝑓𝑖−1 and so if let 𝑖 be
the smallest number such that 𝑓𝑖 ∉ SIZE(𝑠), then
𝑓𝑖 ∈ SIZE(𝑠 + 10𝑛).

a labeled directed graph of 𝑠 + 𝑛 vertices, of which 𝑛
have in-degree zero, and the 𝑠 others have in-degree at
most two. Using the adjacency matrix representation
for such graphs, we can reduce the implicit constant in
Theorem 5.2 to be arbitrarily close to 5, see Exercise 5.6

5.2.1 Size hierarchy theorem (optional)
By Theorem 4.15 the class SIZE𝑛(10 ⋅ 2𝑛/𝑛) contains all functions
from {0, 1}𝑛 to {0, 1}, while by Theorem 5.3, there is some function
𝑓 ∶ {0, 1}𝑛 → {0, 1} that is not contained in SIZE𝑛(0.1 ⋯ 2𝑛/𝑛). In other
words, for every sufficiently large 𝑛,

SIZE𝑛 (0.1 2𝑛
𝑛 ) ⊊ SIZE𝑛 (10 2𝑛

𝑛 ) . (5.3)

It turns out that we can use Theorem 5.3 to show a more general re-
sult: whenever we increase our “budget” of gates we can compute
new functions.

Theorem 5.5 — Size Hierarchy Theorem. For every sufficiently large 𝑛
and 10𝑛 < 𝑠 < 0.12𝑛/𝑛,

SIZE𝑛(𝑠) ⊊ SIZE𝑛(𝑠 + 10𝑛) . (5.4)

Proof Idea:

To prove the theorem we need to find a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}
such that 𝑓 can be computed by a circuit of 𝑠 + 10𝑛 gates but it can not
be computed by a circuit of 𝑠 gates. We will do so by coming up with
a sequence of functions 𝑓0, 𝑓1, 𝑓2, … , 𝑓𝑁 with the following properties:
(1) 𝑓0 can be computed by a circuit of at most 10𝑛 gates, (2) 𝑓𝑁 can
not be computed by a circuit of 0.1 ⋅ 2𝑛/𝑛 gates, and (3) for every 𝑖 ∈
{0, … , 𝑁}, if 𝑓𝑖 can be computed by a circuit of size 𝑠, then 𝑓𝑖+1 can be
computed by a circuit of size at most 𝑠+10𝑛. Together these properties
imply that if we let 𝑖 be the smallest number such that 𝑓𝑖 ∉ SIZE𝑛(𝑠),
then since 𝑓𝑖+1 ∈ SIZE(𝑠) it must hold that 𝑓𝑖 ∈ SIZE(𝑠 + 10𝑛) which is
what we need to prove. See Fig. 5.4 for an illustration.

⋆

Proof of Theorem 5.5. Let 𝑓∗ ∶ {0, 1}𝑛 → {0, 1} be the function
(whose existence we are guaranteed by Theorem 5.3) such that
𝑓∗ ∉ SIZE𝑛(0.1 ⋅ 2𝑛/𝑛). We define the functions 𝑓0, 𝑓1, … , 𝑓2𝑛 map-
ping {0, 1}𝑛 to {0, 1} as follows. For every 𝑥 ∈ {0, 1}𝑛, if 𝑙𝑒𝑥(𝑥) ∈
{0, 1, … , 2𝑛 − 1} is 𝑥’s order in the lexicographical order then

𝑓𝑖(𝑥) =
⎧{
⎨{⎩

𝑓∗(𝑥) 𝑙𝑒𝑥(𝑥) < 𝑖
0 otherwise

. (5.5)
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The function 𝑓0 is simply the constant zero function, while the
function 𝑓2𝑛 is equal to 𝑓∗. Moreover, for every 𝑖 ∈ [2𝑛], the function
𝑓𝑖 and 𝑓𝑖+1 differ on at most one input (i.e., the input 𝑥 ∈ {0, 1}𝑛 such
that 𝑙𝑒𝑥(𝑥) = 𝑖). Let 10𝑛 < 𝑠 < 0.1 ⋅ 2𝑛/𝑛, and let 𝑖 be the first index
such that 𝑓𝑖 ∉ SIZE𝑛(𝑠). Since 𝑓2𝑛 = 𝑓∗ ∉ SIZE(0.1 ̇2𝑛/𝑛) there must
exist such an index 𝑖, and moreover 𝑖 > 0 since the constant zero
function is a member of SIZE𝑛(10𝑛).

By our choice of 𝑖, 𝑓𝑖−1 is a member of SIZE𝑛(𝑠). To complete the
proof, we need to show that 𝑓𝑖 ∈ SIZE𝑛(𝑠 + 10𝑛). Let 𝑥∗ be the string
such that 𝑙𝑒𝑥(𝑥∗) = 𝑖 𝑏 ∈ {0, 1} be the value 𝑓∗(𝑥∗). Then we can define
𝑓𝑖 also as follows

𝑓𝑖(𝑥) =
⎧{
⎨{⎩

𝑏 𝑥 = 𝑥∗

𝑓𝑖(𝑥) 𝑥 ≠ 𝑥∗ (5.6)

or in other words

𝑓𝑖(𝑥) = 𝑓𝑖−1(𝑥) ∧ EQUAL(𝑥∗, 𝑥) ∨ 𝑏 ∧ ¬EQUAL(𝑥∗, 𝑥) (5.7)

where EQUAL ∶ {0, 1}2𝑛 → {0, 1} is the function that maps 𝑥, 𝑥′ ∈
{0, 1}𝑛 to 1 if they are equal and to 0 otherwise. Since (by our choice
of 𝑖), 𝑓𝑖−1 can be computed using at most 𝑠 gates and (as can be easily
verified) that EQUAL ∈ SIZE𝑛(9𝑛), we can compute 𝑓𝑖 using at most
𝑠 + 9𝑛 + 𝑂(1) ≤ 𝑠 + 10𝑛 gates which is what we wanted to prove.

�

Figure 5.5: An illustration of some of what we know
about the size complexity classes (not to scale!). This
figure depicts classes of the form SIZE𝑛,𝑛(𝑠) but the
state of affairs for other size complexity classes such
as SIZE𝑛,1(𝑠) is similar. We know by Theorem 4.12
(with the improvement of Section 4.4.2) that all
functions mapping 𝑛 bits to 𝑛 bits can be computed
by a circuit of size 𝑐 ⋅ 2𝑛 for 𝑐 ≤ 10, while on the
other hand the counting lower bound (Theorem 5.3,
see also Exercise 5.4) shows that some such functions
will require 0.1 ⋅ 2𝑛, and the size hierarchy theorem
(Theorem 5.5) shows the existence of functions in
SIZE(𝑆) ⧵ SIZE(𝑠) whenever 𝑠 = 𝑜(𝑆), see also
Exercise 5.5. We also consider some specific examples:
addition of two 𝑛/2 bit numbers can be done in 𝑂(𝑛)
lines, while we don’t know of such a program for
multiplying two 𝑛 bit numbers, though we do know
it can be done in 𝑂(𝑛2) and in fact even better size.
In the above FACTOR𝑛 corresponds to the inverse
problem of multiplying- finding the prime factorization
of a given number. At the moment we do not know
of any circuit a polynomial (or even sub-exponential)
number of lines that can compute FACTOR𝑛.R

Remark 5.6 — Explicit functions. While the size hierar-
chy theorem guarantees that there exists some function
that can be computed using, for example, 𝑛2 gates, but
not using 100𝑛 gates, we do not know of any explicit
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example of such a function. While we suspect that
integer multiplication is such an example, we do not
have any proof that this is the case.

5.3 THE TUPLES REPRESENTATION

ASCII is a fine presentation of programs, but for some applications
it is useful to have a more concrete representation of NAND-CIRC
programs. In this section we describe a particular choice, that will
be convenient for us later on. A NAND-CIRC program is simply a
sequence of lines of the form

blah = NAND(baz,boo)

There is of course nothing special about the particular names we
use for variables. Although they would be harder to read, we could
write all our programs using only working variables such as temp_0,
temp_1 etc. Therefore, our representation for NAND-CIRC programs
ignores the actual names of the variables, and just associate a number
with each variable. We encode a line of the program as a triple of
numbers. If the line has the form foo = NAND(bar,blah) then we
encode it with the triple (𝑖, 𝑗, 𝑘) where 𝑖 is the number corresponding
to the variable foo and 𝑗 and 𝑘 are the numbers corresponding to bar

and blah respectively.
More concretely, we use will associate every variable with a number

in the set [𝑡] = {0, 1, … , 𝑡 − 1}. The first 𝑛 numbers {0, … , 𝑛 − 1}
correspond to the input variables, the last 𝑚 numbers {𝑡 − 𝑚, … , 𝑡 − 1}
correspond to the output variables, and the intermediate numbers
{𝑛, … , 𝑡 − 𝑚 − 1} correspond to the remaining “workspace” variables.
Formally, we define our representation as follows:

Definition 5.7 — List of tuples representation. Let 𝑃 be a NAND-CIRC
program of 𝑛 inputs, 𝑚 outputs, and 𝑠 lines, and let 𝑡 be the num-
ber of distinct variables used by 𝑃 . The list of tuples representation
of 𝑃 is the triple (𝑛, 𝑚, 𝐿) where 𝐿 is a list of triples of the form
(𝑖, 𝑗, 𝑘) for 𝑖, 𝑗, 𝑘 ∈ [𝑡].

We assign a number for variable of 𝑃 as follows:

• For every 𝑖 ∈ [𝑛], the variable X[𝑖] is assigned the number 𝑖.

• For every 𝑗 ∈ [𝑚], the variable Y[𝑗] is assigned the number
𝑡 − 𝑚 + 𝑗.

• Every other variable is assigned a number in {𝑛, 𝑛+1, … , 𝑡−𝑚−
1} in the order in which the variable appears in the program 𝑃 .
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4 If you’re curious what these few lines are, see our
GitHub repository.

The list of tuples representation is our default choice for represent-
ing NAND-CIRC programs. Since “list of tuples representation” is a
bit of a mouthful, we will often call it simply “the representation” for
a program 𝑃 . Sometimes, when the number 𝑛 of inputs and number
𝑚 of outputs are known from the context, we will simply represent a
program as the list 𝐿 instead of the triple (𝑛, 𝑚, 𝐿).

� Example 5.8 — Representing the XOR program. Our favorite NAND-
CIRC program, the program

u = NAND(X[0],X[1])

v = NAND(X[0],u)

w = NAND(X[1],u)

Y[0] = NAND(v,w)

computing the XOR function is represented as the tuple (2, 1, 𝐿)
where 𝐿 = ((2, 0, 1), (3, 0, 2), (4, 1, 2), (5, 3, 4)). That is, the variables
X[0] and X[1] are given the indices 0 and 1 respectively, the vari-
ables u,v,w are given the indices 2, 3, 4 respectively, and the variable
Y[0] is given the index 5.

Transforming a NAND-CIRC program from its representation as
code to the representation as a list of tuples is a fairly straightforward
programming exercise, and in particular can be done in a few lines of
Python.4 The list-of-tuples representation loses information such as the
particular names we used for the variables, but this is OK since these
names do not make a difference to the functionality of the program.

5.3.1 From tuples to strings
If 𝑃 is a program of size 𝑠, then the number 𝑡 of variables is at most 3𝑠
(as every line touches at most three variables). Hence we can encode
every variable index in [𝑡] as a string of length ℓ = ⌈log(3𝑠)⌉, by adding
leading zeroes as needed. Since this is a fixed-length encoding, it is
prefix free, and so we can encode the list 𝐿 of 𝑠 triples (corresponding
to the encoding of the 𝑠 lines of the program) as simply the string of
length 3ℓ𝑠 obtained by concatenating all of these encodings.

We define 𝑆(𝑠) to be the length of the string representing the list 𝐿
corresponding to a size 𝑠 program. By the above we see that

𝑆(𝑠) = 3𝑠⌈log(3𝑠)⌉ . (5.8)

We can represent 𝑃 = (𝑛, 𝑚, 𝐿) as a string by prepending a prefix
free representation of 𝑛 and 𝑚 to the list 𝐿. Since 𝑛, 𝑚 ≤ 3𝑠 (a pro-
gram must touch at least once all its input and output variables), those
prefix free representations can be encoded using strings of length

https://github.com/boazbk/tcscode
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𝑂(log 𝑠). In particular every program 𝑃 of at most 𝑠 lines can be rep-
resented by a string of length 𝑂(𝑠 log 𝑠). Similarly, every circuit 𝐶 of
at most 𝑠 gates, can be represented by a string of length 𝑂(𝑠 log 𝑠) (for
example by translating 𝐶 to the equivalent program 𝑃 ).

5.4 A NAND-CIRC INTERPRETER IN NAND-CIRC

Since we can represent programs as strings, we can also think of a
program as an input to a function. In particular, for every natural
numbers 𝑠, 𝑛, 𝑚 > 0 we define the function EVAL𝑠,𝑛,𝑚 ∶ {0, 1}𝑆(𝑠)+𝑛 →
{0, 1}𝑚 as follows:

EVAL𝑠,𝑛,𝑚(𝑝𝑥) =
⎧{
⎨{⎩

𝑃(𝑥) 𝑝 ∈ {0, 1}𝑆(𝑠) represents a size-𝑠 program 𝑃 with 𝑛 inputs and 𝑚 outputs
0𝑚 otherwise

(5.9)
where 𝑆(𝑠) is defined as in (5.8) and we use the concrete representa-
tion scheme described in Section 5.1.

That is, EVAL𝑠,𝑛,𝑚 takes as input the concatenation of two strings:
a string 𝑝 ∈ {0, 1}𝑆(𝑠) and a string 𝑥 ∈ {0, 1}𝑛. If 𝑝 is a string that
represents a list of triples 𝐿 such that (𝑛, 𝑚, 𝐿) is a list-of-tuples rep-
resentation of a size-𝑠 NAND-CIRC program 𝑃 , then EVAL𝑠,𝑛,𝑚(𝑝𝑥)
is equal to the evaluation 𝑃(𝑥) of the program 𝑃 on the input 𝑥. Oth-
erwise, EVAL𝑠,𝑛,𝑚(𝑝𝑥) equals 0𝑚 (this case is not very important: you
can simply think of 0𝑛 as some “junk value” that indicates an error).

Take-away points. The fine details of EVAL𝑠,𝑛,𝑚’s definition are not
very crucial. Rather, what you need to remember about EVAL𝑠,𝑛,𝑚 is
that:

• EVAL𝑠,𝑛,𝑚 is a finite function taking a string of fixed length as input
and outputting a string of fixed length as output.

• EVAL𝑠,𝑛,𝑚 is a single function, such that computing EVAL𝑠,𝑛,𝑚
allows to evaluate arbitrary NAND-CIRC programs of a certain
length on arbitrary inputs of the appropriate length.

• EVAL𝑠,𝑛,𝑚 is a function, not a program (recall the discussion in Sec-
tion 3.6.2). That is, EVAL𝑠,𝑛,𝑚 is a specification of what output is
associated with what input. The existence of a program that com-
putes EVAL𝑠,𝑛,𝑚 (i.e., an implementation for EVAL𝑠,𝑛,𝑚) is a sep-
arate fact, which needs to be established (and which we will do
in Theorem 5.9, with a more efficient program shown in in eff-
bounded-univ).

One of the first examples of self circularity we will see in this book is
the following theorem, which we can think of as showing a “NAND-
CIRC interpreter in NAND-CIRC”:
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Figure 5.6: A universal circuit 𝑈 is a circuit that gets as
input the description of an arbitrary (smaller) circuit
𝑃 as a binary string, and an input 𝑥, and outputs the
string 𝑃(𝑥) which is the evaluation of 𝑃 on 𝑥. We can
also think of 𝑈 as a straight-line program that gets as
input the code of a straight-line program 𝑃 and an
input 𝑥, and outputs 𝑃(𝑥).

Theorem 5.9 — Bounded Universality of NAND-CIRC programs. For every
𝑠, 𝑛, 𝑚 ∈ ℕ with 𝑠 ≥ 𝑚 there is a NAND-CIRC program 𝑈𝑠,𝑛,𝑚 that
computes the function EVAL𝑠,𝑛,𝑚.

That is, the NAND-CIRC program 𝑈𝑠,𝑛,𝑚 takes the description
of any other NAND-CIRC program 𝑃 (of the right length and input-
s/outputs) and any input 𝑥, and computes the result of evaluating the
program 𝑃 on the input 𝑥. Given the equivalence between NAND-
CIRC programs and Boolean circuits, we can also think of 𝑈𝑠,𝑛,𝑚 as
a circuit that takes as input the description of other circuits and their
inputs, and returns their evaluation, see Fig. 5.6. We call this NAND-
CIRC program 𝑈𝑠,𝑛,𝑚 that computes EVAL𝑠,𝑛,𝑚 a bounded universal
program (or a universal circuit, see Fig. 5.6). “Universal” stands for
the fact that this is a single program that can evaluate arbitrary code,
where “bounded” stands for the fact that 𝑈𝑠,𝑛,𝑚 only evaluates pro-
grams of bounded size. Of course this limitation is inherent for the
NAND-CIRC programming language, since a program of 𝑠 lines (or,
equivalently, a circuit of 𝑠 gates) can take at most 2𝑠 inputs. Later, in
Chapter 6, we will introduce the concept of loops (and the model of
Turing Machines), that allow to escape this limitation.

Proof. Theorem 5.9 is an important result, but it is actually not hard to
prove. Specifically, since EVAL𝑠,𝑛,𝑚 is a finite function Theorem 5.9 is
an immediate corollary of Theorem 4.12, which states that every finite
function can be computed by some NAND-CIRC program.

�

P
Theorem 5.9 is simple but important. Make sure you
understand what this theorem means, and why it is a
corollary of Theorem 4.12.

5.4.1 Efficient universal programs
Theorem 5.9 establishes the existence of a NAND-CIRC program
for computing EVAL𝑠,𝑛,𝑚, but it provides no explicit bound on the
size of this program. Theorem 4.12, which we used to prove Theo-
rem 5.9, guarantees the existence of a NAND-CIRC program whose
size can be as large as exponential in the length of its input. This would
mean that even for moderately small values of 𝑠, 𝑛, 𝑚 (for example
𝑛 = 100, 𝑠 = 300, 𝑚 = 1), computing EVAL𝑠,𝑛,𝑚 might require a
NAND program with more lines than there are atoms in the observ-
able universe! Fortunately, we can do much better than that. In fact,
for every 𝑠, 𝑛, 𝑚 there exists a NAND-CIRC program for comput-
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ing EVAL𝑠,𝑛,𝑚 with size that is polynomial in its input length. This is
shown in the following theorem.

Theorem 5.10 — Efficient bounded universality of NAND-CIRC programs.

For every 𝑠, 𝑛, 𝑚 ∈ ℕ there is a NAND-CIRC program of at
most 𝑂(𝑠2 log 𝑠) lines that computes the function EVAL𝑠,𝑛,𝑚 ∶
{0, 1}𝑆+𝑛 → {0, 1}𝑚 defined above (where 𝑆 is the number of bits
needed to represent programs of 𝑠 lines).

P
If you haven’t done so already, now might be a good
time to review 𝑂 notation in Section 1.4.8. In particu-
lar, an equivalent way to state Theorem 5.10 is that it
says that there exists some number 𝑐 > 0 such that for
every 𝑠, 𝑛, 𝑚 ∈ ℕ, there exists a NAND-CIRC program
𝑃 of at most 𝑐𝑠2 log 𝑠 lines that computes the function
EVAL𝑠,𝑛,𝑚.

Unlike Theorem 5.9, Theorem 5.10 is not a trivial corollary of the
fact that every finite function can be computed by some circuit. Prov-
ing Theorem 5.9 requires us to present a concrete NAND-CIRC pro-
gram for computing the function EVAL𝑠,𝑛,𝑚. We will do so in several
stages.

1. First, we will describe the algorithm to evaluate EVAL𝑠,𝑛,𝑚 in
“pseudo code”.

2. Then, we will show how we can write a program to compute
EVAL𝑠,𝑛,𝑚 in Python. We will not use much about Python, and
a reader that has familiarity with programming in any language
should be able to follow along.

3. Finally, we will show how we can transform this Python program
into a NAND-CIRC program.

This approach yields much more than just proving Theorem 5.10:
we will see that it is in fact always possible to transform (loop free)
code in high level languages such as Python to NAND-CIRC pro-
grams (and hence to Boolean circuits as well).

5.4.2 A NAND-CIRC interpeter in “pseudocode”
To prove Theorem 5.10 it suffices to give a NAND-CIRC program of
𝑂(𝑠2 log 𝑠) lines that can evaluate NAND-CIRC programs of 𝑠 lines.
Let us start by thinking how we would evaluate such programs if we
weren’t restricted to only performing NAND operations. That is, let us
describe informally an algorithm that on input 𝑛, 𝑚, 𝑠, a list of triples



code as data, data as code 193

𝐿, and a string 𝑥 ∈ {0, 1}𝑛, evaluates the program represented by
(𝑛, 𝑚, 𝐿) on the string 𝑥.

P
It would be highly worthwhile for you to stop here
and try to solve this problem yourself. For example,
you can try thinking how you would write a program
NANDEVAL(n,m,s,L,x) that computes this function in
the programming language of your choice.

We will now describe such an algorithm. We assume that we have
access to a bit array data structure that can store for every 𝑖 ∈ [𝑡] a
bit 𝑇𝑖 ∈ {0, 1}. Specifically, if Table is a variable holding this data
structure, then we assume we can perform the operations:

• GET(Table,i) which retrieves the bit corresponding to i in Table.
The value of i is assumed to be an integer in [𝑡].

• Table = UPDATE(Table,i,b)which updates Table so the the bit
corresponding to i is now set to b. The value of i is assumed to be
an integer in [𝑡] and b is a bit in {0, 1}.

Algorithm 5.11 — Eval NAND-CIRC programs.

Input: Numbers 𝑛, 𝑚, 𝑠 and 𝑡 ≤ 3𝑠, as well as a list 𝐿 of 𝑠
triples of numbers in [𝑡], and a string 𝑥 ∈ {0, 1}𝑛.

Output: Evaluation of the program represented by
(𝑛, 𝑚, 𝐿) on the

Input: 𝑥 ∈ {0, 1}𝑛.
1: Let Vartable be table of size 𝑡
2: for 𝑖 in [𝑛] do
3: Vartable = UPDATE(Vartable,𝑖,𝑥𝑖)
4: end for
5: for (𝑖, 𝑗, 𝑘) in 𝐿 do
6: 𝑎 ← GET(Vartable,𝑗)
7: 𝑏 ← GET(Vartable,𝑘)
8: Vartable = UPDATE(Vartable,𝑖,NAND(𝑎,𝑏))
9: end for

10: for 𝑗 in [𝑚] do
11: 𝑦𝑗 ← GET(Vartable,𝑡 − 𝑚 + 𝑗)
12: end for
13: return 𝑦0, … , 𝑦𝑚−1

Algorithm 5.11 evaluates the program given to it as input one line
at a time, updating the Vartable table to contain the value of each
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5 Python does not distinguish between lists and
arrays, but allows constant time random access to an
indexed elements to both of them. One could argue
that if we allowed programs of truly unbounded
length (e.g., larger than 264) then the price would
not be constant but logarithmic in the length of the
array/lists, but the difference between 𝑂(𝑠) and
𝑂(𝑠 log 𝑠) will not be important for our discussions.

variable. At the end of the execution it outputs the variables at posi-
tions 𝑡 − 𝑚, 𝑡 − 𝑚 + 1, … , 𝑡 − 1 which correspond to the input variables.

5.4.3 A NAND interpreter in Python
To make things more concrete, let us see how we implement Algo-
rithm 5.11 in the Python programming language. (There is nothing
special about Python. We could have easily presented a corresponding
function in JavaScript, C, OCaml, or any other programming lan-
guage.) We will construct a function NANDEVAL that on input 𝑛, 𝑚, 𝐿, 𝑥
will output the result of evaluating the program represented by
(𝑛, 𝑚, 𝐿) on 𝑥. To keep things simple, we will not worry about the case
that 𝐿 does not represent a valid program of 𝑛 inputs and 𝑚 outputs.
The code is presented in Fig. 5.7.

Accessing an element of the array Vartable at a given index takes
a constant number of basic operations. Hence (since 𝑛, 𝑚 ≤ 𝑠 and
𝑡 ≤ 3𝑠), the program above will use 𝑂(𝑠) basic operations.5

5.4.4 Constructing the NAND-CIRC interpreter in NAND-CIRC
We now turn to describing the proof of Theorem 5.10. To prove the
theorem it is not enough to give a Python program. Rather, we need to
show how we compute the function EVAL𝑠,𝑛,𝑚 using a NAND-CIRC
program. In other words, our job is to transform, for every 𝑠, 𝑛, 𝑚, the
Python code of Section 5.4.3 to a NAND-CIRC program 𝑈𝑠,𝑛,𝑚 that
computes the function EVAL𝑠,𝑛,𝑚.

P
Before reading further, try to think how you could give
a “constructive proof” of Theorem 5.10. That is, think
of how you would write, in the programming lan-
guage of your choice, a function universal(s,n,m)
that on input 𝑠, 𝑛, 𝑚 outputs the code for the NAND-
CIRC program 𝑈𝑠,𝑛,𝑚 such that 𝑈𝑠,𝑛,𝑚 computes
EVAL𝑠,𝑛,𝑚. There is a subtle but crucial difference
between this function and the Python NANDEVAL pro-
gram described above. Rather than actually evaluating
a given program 𝑃 on some input 𝑤, the function
universal should output the code of a NAND-CIRC
program that computes the map (𝑃 , 𝑥) ↦ 𝑃(𝑥).

Our construction will follow very closely the Python implementa-
tion of EVAL above. We will use variables Vartable[0],…,Vartable[2ℓ−
1], where ℓ = ⌈log 3𝑠⌉ to store our variables. However, NAND doesn’t
have integer-valued variables, so we cannot write code such as
Vartable[i] for some variable i. However, we can implement the
function GET(Vartable,i) that outputs the i-th bit of the array
Vartable. Indeed, this is nothing but the function LOOKUPℓ that we
have seen in Theorem 4.10!
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Figure 5.7: Code for evaluating a NAND-CIRC program given in the list-of-tuples representation

def NANDEVAL(n,m,L,X):

# Evaluate a NAND-CIRC program from list of tuple representation.

s = len(L) # num of lines

t = max(max(a,b,c) for (a,b,c) in L)+1 # max index in L + 1

Vartable = [0] * t # initialize array

# helper functions

def GET(V,i): return V[i]

def UPDATE(V,i,b):

V[i]=b

return V

# load input values to Vartable:

for i in range(n):

Vartable = UPDATE(Vartable,i,X[i])

# Run the program

for (i,j,k) in L:

a = GET(Vartable,j)

b = GET(Vartable,k)

c = NAND(a,b)

Vartable = UPDATE(Vartable,i,c)

# Return outputs Vartable[t-m], Vartable[t-m+1],....,Vartable[t-1]

return [GET(Vartable,t-m+j) for j in range(m)]

# Test on XOR (2 inputs, 1 output)

L = ((2, 0, 1), (3, 0, 2), (4, 1, 2), (5, 3, 4))

print(NANDEVAL(2,1,L,(0,1))) # XOR(0,1)

# [1]

print(NANDEVAL(2,1,L,(1,1))) # XOR(1,1)

# [0]
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P
Please make sure that you understand why GET and
LOOKUPℓ are the same function.

We saw that we can compute LOOKUPℓ in time 𝑂(2ℓ) = 𝑂(𝑠) for
our choice of ℓ.

For every ℓ, let UPDATEℓ ∶ {0, 1}2ℓ+ℓ+1 → {0, 1}2ℓ correspond to the
UPDATE function for arrays of length 2ℓ. That is, on input 𝑉 ∈ {0, 1}2ℓ ,
𝑖 ∈ {0, 1}ℓ, 𝑏 ∈ {0, 1}, UPDATEℓ(𝑉 , 𝑏, 𝑖) is equal to 𝑉 ′ ∈ {0, 1}2ℓ such
that

𝑉 ′
𝑗 =

⎧{
⎨{⎩

𝑉𝑗 𝑗 ≠ 𝑖
𝑏 𝑗 = 1

(5.10)

where we identify the string 𝑖 ∈ {0, 1}ℓ with a number in {0, … , 2ℓ − 1}
using the binary representation. We can compute UPDATEℓ using an
𝑂(2ℓℓ) = (𝑠 log 𝑠) line NAND-CIRC program as as follows:

1. For every 𝑗 ∈ [2ℓ], there is an 𝑂(ℓ) line NAND-CIRC program to
compute the function EQUALS𝑗 ∶ {0, 1}ℓ → {0, 1} that on input 𝑖
outputs 1 if and only if 𝑖 is equal to (the binary representation of) 𝑗.
(We leave verifying this as Exercise 5.2 and Exercise 5.3.)

2. We have seen that we can compute the function IF ∶ {0, 1}3 → {0, 1}
such that IF(𝑎, 𝑏, 𝑐) equals 𝑏 if 𝑎 = 1 and 𝑐 if 𝑎 = 0.

Together, this means that we can compute UPDATE (using some
“syntactic sugar” for bounded length loops) as follows:

def UPDATE_ell(V,i,b):

# Get V[0]...V[2^ell-1], i in {0,1}^ell, b in {0,1}

# Return NewV[0],...,NewV[2^ell-1]

# updated array with NewV[i]=b and all

# else same as V

for j in range(2**ell): # j = 0,1,2,....,2^ell -1

a = EQUALS_j(i)

NewV[j] = IF(a,b,V[j])

return NewV

Since the loop over j in UPDATE is run 2ℓ times, and computing
EQUALS_j takes 𝑂(ℓ) lines, the total number of lines to compute UP-
DATE is 𝑂(2ℓ ⋅ ℓ) = 𝑂(𝑠 log 𝑠). Once we can compute GET and UPDATE,
the rest of the implementation amounts to “book keeping” that needs
to be done carefully, but is not too insightful, and hence we omit the
full details. Since we run GET and UPDATE 𝑠 times, the total number of
lines for computing EVAL𝑠,𝑛,𝑚 is 𝑂(𝑠2) + 𝑂(𝑠2 log 𝑠) = 𝑂(𝑠2 log 𝑠).
This completes (up to the omitted details) the proof of Theorem 5.10.
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R
Remark 5.12 — Improving to quasilinear overhead (ad-
vanced optional note). The NAND-CIRC program
above is less efficient that its Python counterpart,
since NAND does not offer arrays with efficient ran-
dom access. Hence for example the LOOKUP operation
on an array of 𝑠 bits takes Ω(𝑠) lines in NAND even
though it takes 𝑂(1) steps (or maybe 𝑂(log 𝑠) steps,
depending how we count) in Python.
It turns out that it is possible to improve the bound
of Theorem 5.10, and evaluate 𝑠 line NAND-CIRC
programs using a NAND-CIRC program of 𝑂(𝑠 log 𝑠)
lines. The key is to consider the description of NAND-
CIRC programs as circuits, and in particular as di-
rected acyclic graphs (DAGs) of bounded in degree.
A universal NAND-CIRC program 𝑈𝑠 for 𝑠 line pro-
grams will correspond to a universal graph 𝐻𝑠 for such
𝑠 vertex DAGs. We can think of such as graph 𝑈𝑠
as fixed “wiring” for communication network, that
should be able to accommodate any arbitrary pattern
of communication between 𝑠 vertices (where this pat-
tern corresponds to an 𝑠 line NAND-CIRC program).
It turns out that there exist such efficient routing
networks exist that allow embedding any 𝑠 vertex
circuit inside a universal graph of size 𝑂(𝑠 log 𝑠), see
the bibliographical notes Section 5.9 for more on this
issue.

5.5 A PYTHON INTERPRETER IN NAND-CIRC (DISCUSSION)

To prove Theorem 5.10 we essentially translated every line of the
Python program for EVAL into an equivalent NAND-CIRC snip-
pet. However none of our reasoning was specific to the particu-
lar function EVAL. It is possible to translate every Python program
into an equivalent NAND-CIRC program of comparable efficiency.
(More concretely, if the Python program takes 𝑇 (𝑛) operations on
inputs of length at most 𝑛 then there exists NAND-CIRC program of
𝑂(𝑇 (𝑛) log𝑇 (𝑛)) lines that agrees with the Python program on inputs
of length 𝑛.) Actually doing so requires taking care of many details
and is beyond the scope of this book, but let me try to convince you
why you should believe it is possible in principle.

For starters, one can can use CPython (the reference implemen-
tation for Python), to evaluate every Python program using a C pro-
gram. We can combine this with a C compiler to transform a Python
program to various flavors of “machine language”. So, to transform
a Python program into an equivalent NAND-CIRC program, it is
enough to show how to transform a machine language program into
an equivalent NAND-CIRC program. One minimalistic (and hence

https://goo.gl/NnkkjM
https://goo.gl/NnkkjM
https://en.wikipedia.org/wiki/CPython
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6 ARM stands for “Advanced RISC Machine” where
RISC in turn stands for “Reduced instruction set
computer”.

convenient) family of machine languages is known as the ARM archi-
tecture which powers many mobile devices including essentially all
Android devices.6 There are even simpler machine languages, such as
the LEG architecture for which a backend for the LLVM compiler was
implemented (and hence can be the target of compiling any of large
and growing list of languages that this compiler supports). Other ex-
amples include the TinyRAM architecture (motivated by interactive
proof systems that we will discuss in Chapter 21) and the teaching-
oriented Ridiculously Simple Computer architecture. Going one by
one over the instruction sets of such computers and translating them
to NAND snippets is no fun, but it is a feasible thing to do. In fact,
ultimately this is very similar to the transformation that takes place
in converting our high level code to actual silicon gates that are not
so different from the operations of a NAND-CIRC program. Indeed,
tools such as MyHDL that transform “Python to Silicon” can be used
to convert a Python program to a NAND-CIRC program.

The NAND-CIRC programming language is just a teaching tool,
and by no means do I suggest that writing NAND-CIRC programs, or
compilers to NAND-CIRC, is a practical, useful, or enjoyable activity.
What I do want is to make sure you understand why it can be done,
and to have the confidence that if your life (or at least your grade)
depended on it, then you would be able to do this. Understanding
how programs in high level languages such as Python are eventually
transformed into concrete low-level representation such as NAND is
fundamental to computer science.

The astute reader might notice that the above paragraphs only
outlined why it should be possible to find for every particular Python-
computable function 𝑓 , a particular comparably efficient NAND-CIRC
program 𝑃 that computes 𝑓 . But this still seems to fall short of our
goal of writing a “Python interpreter in NAND” which would mean
that for every parameter 𝑛, we come up with a single NAND-CIRC
program UNIV𝑠 such that given a description of a Python program
𝑃 , a particular input 𝑥, and a bound 𝑇 on the number of operations
(where the lengths of 𝑃 and 𝑥 and the value of 𝑇 are all at most 𝑠)
returns the result of executing 𝑃 on 𝑥 for at most 𝑇 steps. After all,
the transformation above takes every Python program into a different
NAND-CIRC program, and so does not yield “one NAND-CIRC pro-
gram to rule them all” that can evaluate every Python program up to
some given complexity. However, we can in fact obtain one NAND-
CIRC program to evaluate arbitrary Python programs. The reason is
that there exists a Python interpreter in Python: a Python program 𝑈
that takes a bit string, interprets it as Python code, and then runs that
code. Hence, we only need to show a NAND-CIRC program 𝑈 ∗ that

https://github.com/frasercrmck/llvm-leg
http://llvm.org/
https://en.wikipedia.org/wiki/LLVM#Front_ends
https://en.wikipedia.org/wiki/LLVM#Front_ends
http://www.scipr-lab.org/doc/TinyRAM-spec-0.991.pdf
https://www.ece.umd.edu/~blj/RiSC/
http://www.myhdl.org/
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computes the same function as the particular Python program 𝑈 , and
this will give us a way to evaluate all Python programs.

What we are seeing time and again is the notion of universality or
self reference of computation, which is the sense that all reasonably rich
models of computation are expressive enough that they can “simulate
themselves”. The importance of this phenomena to both the theory
and practice of computing, as well as far beyond it, including the
foundations of mathematics and basic questions in science, cannot be
overstated.

5.6 THE PHYSICAL EXTENDED CHURCH-TURING THESIS (DISCUS-
SION)

We’ve seen that NAND gates (and other Boolean operations) can be
implemented using very different systems in the physical world. What
about the reverse direction? Can NAND-CIRC programs simulate any
physical computer?

We can take a leap of faith and stipulate that Boolean circuits (or
equivalently NAND-CIRC programs) do actually encapsulate every
computation that we can think of. Such a statement (in the realm of
infinite functions, which we’ll encounter in Chapter 6) is typically
attributed to Alonzo Church and Alan Turing, and in that context
is known as the Church Turing Thesis. As we will discuss in future
lectures, the Church-Turing Thesis is not a mathematical theorem or
conjecture. Rather, like theories in physics, the Church-Turing Thesis
is about mathematically modeling the real world. In the context of
finite functions, we can make the following informal hypothesis or
prediction:

“Physical Extended Church-Turing Thesis”
(PECTT): If a function 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚

can be computed in the physical world using 𝑠 amount
of “physical resources” then it can be computed by a
Boolean circuit program of roughly 𝑠 gates.

A priori it might seem rather extreme to hypothesize that our mea-
ger model of NAND-CIRC programs or Boolean circuits captures all
possible physical computation. But yet, in more than a century of
computing technologies, no one has yet built any scalable computing
device that challenges this hypothesis.

We now discuss the “fine print” of the PECTT in more detail, as
well as the (so far unsuccessful) challenges that have been raised
against it. There is no single universally-agreed-upon formalization
of “roughly 𝑠 physical resources”, but we can approximate this notion
by considering the size of any physical computing device and the
time it takes to compute the output, and ask that any such device can
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be simulated by a Boolean circuit with a number of gates that is a
polynomial (with not too large exponent) in the size of the system and
the time it takes it to operate.

In other words, we can phrase the PECTT as stipulating that any
function that can be computed by a device of that takes as a certain
volume 𝑉 of space and requires 𝑡 time to complete the computa-
tion, must be computable by a Boolean circuit with a number of gates
𝑝(𝑉 , 𝑡) that is polynomial in 𝑉 and 𝑡.

The exact form of the function 𝑝(𝑉 , 𝑡) is not universally agreed
upon but it is generally accepted that if 𝑓 ∶ {0, 1}𝑛 → {0, 1} is an
exponentially hard function, in the sense that it has no NAND-CIRC
program of fewer than, say, 2𝑛/2 lines, then a demonstration of a phys-
ical device that can compute in the real world 𝑓 for moderate input
lengths (e.g., 𝑛 = 500) would be a violation of the PECTT.

R
Remark 5.13 — Advanced note: making PECTT concrete
(advanced, optional). We can attempt at a more exact
phrasing of the PECTT as follows. Suppose that 𝑍 is
a physical system that accepts 𝑛 binary stimuli and
has a binary output, and can be enclosed in a sphere
of volume 𝑉 . We say that the system 𝑍 computes a
function 𝑓 ∶ {0, 1}𝑛 → {0, 1} within 𝑡 seconds if when-
ever we set the stimuli to some value 𝑥 ∈ {0, 1}𝑛, if
we measure the output after 𝑡 seconds then we obtain
𝑓(𝑥).
One can then phrase the PECTT as stipulating that if
there exists such a system 𝑍 that computes 𝐹 within
𝑡 seconds, then there exists a NAND-CIRC program
that computes 𝐹 and has at most 𝛼(𝑉 𝑡)2 lines, where
𝛼 is some normalization constant. (We can also con-
sider variants where we use surface area instead
of volume, or take (𝑉 𝑡) to a different power than 2.
However, none of these choices makes a qualitative
difference to the discussion below.) In particular,
suppose that 𝑓 ∶ {0, 1}𝑛 → {0, 1} is a function that
requires 2𝑛/(100𝑛) > 20.8𝑛 lines for any NAND-CIRC
program (such a function exists by Theorem 5.3).
Then the PECTT would imply that either the volume
or the time of a system that computes 𝐹 will have to
be at least 20.2𝑛/√𝛼. Since this quantity grows expo-
nentially in 𝑛, it is not hard to set parameters so that
even for moderately large values of 𝑛, such a system
could not fit in our universe.
To fully make the PECTT concrete, we need to decide
on the units for measuring time and volume, and the
normalization constant 𝛼. One conservative choice is
to assume that we could squeeze computation to the
absolute physical limits (which are many orders of
magnitude beyond current technology). This corre-
sponds to setting 𝛼 = 1 and using the Planck units

https://goo.gl/ALgbVS
https://goo.gl/gkpmBF
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for volume and time. The Planck length ℓ𝑃 (which is,
roughly speaking, the shortest distance that can the-
oretically be measured) is roughly 2−120 meters. The
Planck time 𝑡𝑃 (which is the time it takes for light to
travel one Planck length) is about 2−150 seconds. In the
above setting, if a function 𝐹 takes, say, 1KB of input
(e.g., roughly 104 bits, which can encode a 100 by 100
bitmap image), and requires at least 20.8𝑛 = 20.8⋅104

NAND lines to compute, then any physical system
that computes it would require either volume of
20.2⋅104 Planck length cubed, which is more than 21500

meters cubed or take at least 20.2⋅104 Planck Time units,
which is larger than 21500 seconds. To get a sense of
how big that number is, note that the universe is only
about 260 seconds old, and its observable radius is
only roughly 290 meters. The above discussion sug-
gests that it is possible to empirically falsify the PECTT
by presenting a smaller-than-universe-size system that
computes such a function.
There are of course several hurdles to refuting the
PECTT in this way, one of which is that we can’t actu-
ally test the system on all possible inputs. However,
it turns out that we can get around this issue using
notions such as interactive proofs and program checking
that we might encounter later in this book. Another,
perhaps more salient problem, is that while we know
many hard functions exist, at the moment there is no
single explicit function 𝐹 ∶ {0, 1}𝑛 → {0, 1} for which
we can prove an 𝜔(𝑛) (let alone Ω(2𝑛/𝑛)) lower bound
on the number of lines that a NAND-CIRC program
needs to compute it.

5.6.1 Attempts at refuting the PECTT
One of the admirable traits of mankind is the refusal to accept limita-
tions. In the best case this is manifested by people achieving long-
standing “impossible” challenges such as heavier-than-air flight,
putting a person on the moon, circumnavigating the globe, or even
resolving Fermat’s Last Theorem. In the worst case it is manifested by
people continually following the footsteps of previous failures to try to
do proven-impossible tasks such as build a perpetual motion machine,
trisect an angle with a compass and straightedge, or refute Bell’s in-
equality. The Physical Extended Church Turing thesis (in its various
forms) has attracted both types of people. Here are some physical
devices that have been speculated to achieve computational tasks that
cannot be done by not-too-large NAND-CIRC programs:

• Spaghetti sort: One of the first lower bounds that Computer Sci-
ence students encounter is that sorting 𝑛 numbers requires making
Ω(𝑛 log𝑛) comparisons. The “spaghetti sort” is a description of a

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
https://en.wikipedia.org/wiki/Perpetual_motion
https://en.wikipedia.org/wiki/Angle_trisection
https://en.wikipedia.org/wiki/Bell%27s_theorem
https://en.wikipedia.org/wiki/Bell%27s_theorem
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Figure 5.8: Scott Aaronson tests a candidate device for
computing Steiner trees using soap bubbles.

proposed “mechanical computer” that would do this faster. The
idea is that to sort 𝑛 numbers 𝑥1, … , 𝑥𝑛, we could cut 𝑛 spaghetti
noodles into lengths 𝑥1, … , 𝑥𝑛, and then if we simply hold them
together in our hand and bring them down to a flat surface, they
will emerge in sorted order. There are a great many reasons why
this is not truly a challenge to the PECTT hypothesis, and I will not
ruin the reader’s fun in finding them out by her or himself.

• Soap bubbles: One function 𝐹 ∶ {0, 1}𝑛 → {0, 1} that is conjectured
to require a large number of NAND lines to solve is the Euclidean
Steiner Tree problem. This is the problem where one is given 𝑚
points in the plane (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) (say with integer coordi-
nates ranging from 1 till 𝑚, and hence the list can be represented
as a string of 𝑛 = 𝑂(𝑚 log𝑚) size) and some number 𝐾. The goal
is to figure out whether it is possible to connect all the points by
line segments of total length at most 𝐾. This function is conjec-
tured to be hard because it is NP complete - a concept that we’ll en-
counter later in this course - and it is in fact reasonable to conjecture
that as 𝑚 grows, the number of NAND lines required to compute
this function grows exponentially in 𝑚, meaning that the PECTT
would predict that if 𝑚 is sufficiently large (such as few hundreds
or so) then no physical device could compute 𝐹 . Yet, some people
claimed that there is in fact a very simple physical device that could
solve this problem, that can be constructed using some wooden
pegs and soap. The idea is that if we take two glass plates, and put
𝑚 wooden pegs between them in the locations (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)
then bubbles will form whose edges touch those pegs in the way
that will minimize the total energy which turns out to be a func-
tion of the total length of the line segments. The problem with this
device of course is that nature, just like people, often gets stuck in
“local optima”. That is, the resulting configuration will not be one
that achieves the absolute minimum of the total energy but rather
one that can’t be improved with local changes. Aaronson has car-
ried out actual experiments (see Fig. 5.8), and saw that while this
device often is successful for three or four pegs, it starts yielding
suboptimal results once the number of pegs grows beyond that.

• DNA computing. People have suggested using the properties of
DNA to do hard computational problems. The main advantage
of DNA is the ability to potentially encode a lot of information in
relatively small physical space, as well as compute on this infor-
mation in a highly parallel manner. At the time of this writing, it
was demonstrated that one can use DNA to store about 1016 bits
of information in a region of radius about a millimeter, as opposed

http://www.scottaaronson.com/blog/?p=266
http://www.scottaaronson.com/papers/npcomplete.pdf
http://science.sciencemag.org/content/337/6102/1628.full
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7 We were extremely conservative in the suggested
parameters for the PECTT, having assumed that as
many as ℓ−2

𝑃 10−6 ∼ 1061 bits could potentially be
stored in a millimeter radius region.

to about 1010 bits with the best known hard disk technology. This
does not posit a real challenge to the PECTT but does suggest that
one should be conservative about the choice of constant and not as-
sume that current hard disk + silicon technologies are the absolute
best possible.7

• Continuous/real computers. The physical world is often described
using continuous quantities such as time and space, and people
have suggested that analog devices might have direct access to
computing with real-valued quantities and would be inherently
more powerful than discrete models such as NAND machines.
Whether the “true” physical world is continuous or discrete is an
open question. In fact, we do not even know how to precisely phrase
this question, let alone answer it. Yet, regardless of the answer, it
seems clear that the effort to measure a continuous quantity grows
with the level of accuracy desired, and so there is no “free lunch”
or way to bypass the PECTT using such machines (see also this
paper). Related to that are proposals known as “hypercomputing”
or “Zeno’s computers” which attempt to use the continuity of time
by doing the first operation in one second, the second one in half a
second, the third operation in a quarter second and so on.. These
fail for a similar reason to the one guaranteeing that Achilles will
eventually catch the tortoise despite the original Zeno’s paradox.

• Relativity computer and time travel. The formulation above as-
sumed the notion of time, but under the theory of relativity time is
in the eye of the observer. One approach to solve hard problems is
to leave the computer to run for a lot of time from his perspective,
but to ensure that this is actually a short while from our perspective.
One approach to do so is for the user to start the computer and then
go for a quick jog at close to the speed of light before checking on
its status. Depending on how fast one goes, few seconds from the
point of view of the user might correspond to centuries in com-
puter time (it might even finish updating its Windows operating
system!). Of course the catch here is that the energy required from
the user is proportional to how close one needs to get to the speed
of light. A more interesting proposal is to use time travel via closed
timelike curves (CTCs). In this case we could run an arbitrarily long
computation by doing some calculations, remembering the current
state, and the travelling back in time to continue where we left off.
Indeed, if CTCs exist then we’d probably have to revise the PECTT
(though in this case I will simply travel back in time and edit these
notes, so I can claim I never conjectured it in the first place…)

• Humans. Another computing system that has been proposed as
a counterexample to the PECTT is a 3 pound computer of about

http://www.cs.princeton.edu/~ken/MCS86.pdf
http://www.cs.princeton.edu/~ken/MCS86.pdf
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8 This is a very rough approximation that could
be wrong to a few orders of magnitude in either
direction. For one, there are other structures in the
brain apart from neurons that one might need to
simulate, hence requiring higher overhead. On the
other hand, it is by no mean clear that we need to
fully clone the brain in order to achieve the same
computational tasks that it does.

9 There are some well known scientists that have
advocated that humans have inherent computational
advantages over computers. See also this.

0.1m radius, namely the human brain. Humans can walk around,
talk, feel, and do others things that are not commonly done by
NAND-CIRC programs, but can they compute partial functions
that NAND-CIRC programs cannot? There are certainly compu-
tational tasks that at the moment humans do better than computers
(e.g., play some video games, at the moment), but based on our
current understanding of the brain, humans (or other animals)
have no inherent computational advantage over computers. The
brain has about 1011 neurons, each operating in a speed of about
1000 operations per seconds. Hence a rough first approximation is
that a Boolean circuit of about 1014 gates could simulate one second
of a brain’s activity.8 Note that the fact that such a circuit (likely)
exists does not mean it is easy to find it. After all, constructing this
circuit took evolution billions of years. Much of the recent efforts
in artificial intelligence research is focused on finding programs
that replicate some of the brain’s capabilities and they take massive
computational effort to discover, these programs often turn out to
be much smaller than the pessimistic estimates above. For example,
at the time of this writing, Google’s neural network for machine
translation has about 104 nodes (and can be simulated by a NAND-
CIRC program of comparable size). Philosophers, priests and many
others have since time immemorial argued that there is something
about humans that cannot be captured by mechanical devices such
as computers; whether or not that is the case, the evidence is thin
that humans can perform computational tasks that are inherently
impossible to achieve by computers of similar complexity.9

• Quantum computation. The most compelling attack on the Physi-
cal Extended Church Turing Thesis comes from the notion of quan-
tum computing. The idea was initiated by the observation that sys-
tems with strong quantum effects are very hard to simulate on a
computer. Turning this observation on its head, people have pro-
posed using such systems to perform computations that we do not
know how to do otherwise. At the time of this writing, Scalable
quantum computers have not yet been built, but it is a fascinating
possibility, and one that does not seem to contradict any known
law of nature. We will discuss quantum computing in much more
detail in Chapter 22. Modeling quantum computation involves ex-
tending the model of Boolean circuits into Quantum circuits that
have one more (very special) gate. However, the main take away
is that while quantum computing does suggest we need to amend
the PECTT, it does not require a complete revision of our world-
view. Indeed, almost all of the content of this book remains the

http://www.telegraph.co.uk/science/2017/03/14/can-solve-chess-problem-holds-key-human-consciousness/
https://arxiv.org/abs/1508.05929
http://www.theverge.com/2016/11/4/13518210/deepmind-starcraft-ai-google-blizzard
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
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same regardless of whether the underlying computational model is
Boolean circuits or quantum circuits.

R
Remark 5.14 — Physical Extended Church-Turing Thesis
and Cryptography. While even the precise phrasing of
the PECTT, let alone understanding its correctness, is
still a subject of active research, some variants of it are
already implicitly assumed in practice. Governments,
companies, and individuals currently rely on cryptog-
raphy to protect some of their most precious assets,
including state secrets, control of weapon systems
and critical infrastructure, securing commerce, and
protecting the confidentiality of personal information.
In applied cryptography, one often encounters state-
ments such as “cryptosystem 𝑋 provides 128 bits of
security”. What such a statement really means that
(a) it is conjectured that there is no Boolean circuit
(or, equivalently, a NAND-CIRC program) of size
much smaller than 2128 that can break 𝑋, and (b) we
assume that no other physical mechanism can do bet-
ter, and hence it would take roughly a 2128 amount of
“resources” to break 𝑋. We say “conjectured” and not
“proved” because, while we can phrase the statement
that breaking the system cannot be done by an 𝑠-gate
circuit as a precise mathematical conjecture, at the
moment we are unable to prove such a statement for
any non-trivial cryptosystem. This is related to the P
vs NP question we will discuss in future chapters. We
will explore Cryptography in Chapter 20.

✓ Lecture Recap

• We can think of programs both as describing a pro-
cess, as well as simply a list of symbols that can be
considered as data that can be fed as input to other
programs.

• We can write a NAND-CIRC program that evalu-
ates arbitrary NAND-CIRC programs (or equiv-
alently a circuit that evaluates other circuits).
Moreover, the efficiency loss in doing so is not too
large.

• We can even write a NAND-CIRC program that
evaluates programs in other programming lan-
guages such as Python, C, Lisp, Java, Go, etc.

• By a leap of faith, we could hypothesize that the
number of gates in the smallest circuit that com-
putes a function 𝑓 captures roughly the amount
of physical resources required to compute 𝑓 . This
statement is known as the Physical Extended Church-
Turing Thesis (PECTT).
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• Boolean circuits (or equivalently AON-CIRC or
NAND-CIRC programs) capture a surprisingly
wide array of computational models. The strongest
currently known challenge to the PECTT comes
from the potential for using quantum mechanical
effects to speed-up computation, a model known as
quantum computers.

Figure 5.9: A finite computational task is specified by
a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚. We can model
a computational process using Boolean circuits (of
varying gate sets) or straight-line program. Every
function can be computed by many programs. We
say that 𝑓 ∈ SIZE𝑛,𝑚(𝑠) if there exists a NAND
circuit of at most 𝑠 gates (equivalently a NAND-CIRC
program of at most 𝑠 lines) that computes 𝑓. Every
function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be computed by
a circuit of 𝑂(𝑚 ⋅ 2𝑛/𝑛) gates. Many functions such
as multiplication, addition, solving linear equations,
computing the shortest path in a graph, and others,
can be computed by circuits of much fewer gates.
In particular there is an 𝑂(𝑠 log2 𝑠)-size circuit
that computes the map 𝐶, 𝑥 ↦ 𝐶(𝑥) where 𝐶 is
a string describing a circuit of 𝑠 gates. However,
the counting argument shows there do exist some
functions 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 that require
Ω(𝑚 ⋅ 2𝑛/𝑛) gates to compute.

5.7 RECAP OF PART I: FINITE COMPUTATION

This chapter concludes the first part of this book that deals with finite
computation (computing functions that map a fixed number of Boolean
inputs to a fixed number of Boolean outputs). The main take-aways
from Chapter 3, Chapter 4, and Chapter 5 are as follows (see also
Fig. 5.9):

• We can formally define the notion of a function 𝑓 ∶ {0, 1}𝑛 →
{0, 1}𝑚 being computable using 𝑠 basic operations. Whether these
operations are AND/OR/NOT, NAND, or some other universal
basis does not make much difference. We can describe such a com-
putation either using a circuit or using a straight-line program.

• We define SIZE𝑛,𝑚(𝑠) to be the set of functions that are computable
by NAND circuits of at most 𝑠 gates. This set is equal to the set
of functions computable by a NAND-CIRC program of at most 𝑠
lines and pp to a constant factor in 𝑠 (which we will not care about)
this is also the same as the set of functions that are computable
by a Boolean circuit of at most 𝑠 AND/OR/NOT gates. The class
SIZE𝑛,𝑚(𝑠) is a set of functions, not of programs/circuits.
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• Every function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be computed using a
circuit of at most 𝑂(𝑚 ⋅ 2𝑛/𝑛) gates. Some functions require at least
Ω(𝑚 ⋅ 2𝑛/𝑛) gates. We define SIZE𝑛,𝑚(𝑠) to be the set of functions
from {0, 1}𝑛 to {0, 1}𝑚 that can be computed using at most 𝑠 gates.

• We can describe a circuit/program 𝑃 as a string. For every 𝑠, there
is a universal circuit/program 𝑈𝑠 that can evaluate programs of
length 𝑠 given their description as strings. We can use this repre-
sentation also to count the number of circuits of at most 𝑠 gates and
hence prove that some functions cannot be computed by circuit of
smaller-than-exponential size.

• If there is a circuit of 𝑠 gates that computes a function 𝑓 , then we
can build a physical device to compute 𝑓 using 𝑠 basic components
(such as transistors). The “Physical Extended Church-Turing The-
sis” postulates postulates that the reverse direction is true as well:
if 𝑓 is a function for which every circuit requires at least 𝑠 gates
then that every physical device to compute 𝑓 will require about 𝑠
“physical resources”. The main challenge to the PECTT is quantum
computing, which we will discuss in Chapter 22.

Sneak preview: In the next part we will discuss how to model compu-
tational tasks on unbounded inputs, which are specified using functions
𝐹 ∶ {0, 1}∗ → {0, 1}∗ (or 𝐹 ∶ {0, 1}∗ → {0, 1}) that can take an
unbounded number of Boolean inputs.

5.8 EXERCISES

Exercise 5.1 Which one of the following statements is false:

a. There is an 𝑂(𝑠3) line NAND-CIRC program that given as input
program 𝑃 of 𝑠 lines in the list-of-tuples representation computes
the output of 𝑃 when all its input are equal to 1.

b. There is an 𝑂(𝑠3) line NAND-CIRC program that given as input
program 𝑃 of 𝑠 characters encoded as a string of 7𝑠 bits using the
ASCII encoding, computes the output of 𝑃 when all its input are
equal to 1.

c. There is an 𝑂(√𝑠) line NAND-CIRC program that given as input
program 𝑃 of 𝑠 lines in the list-of-tuples representation computes
the output of 𝑃 when all its input are equal to 1.

�

Exercise 5.2 — Equals function. For every 𝑘 ∈ ℕ, show that there is an 𝑂(𝑘)
line NAND-CIRC program that computes the function EQUALS𝑘 ∶
{0, 1}2𝑘 → {0, 1} where EQUALS(𝑥, 𝑥′) = 1 if and only if 𝑥 = 𝑥′.

�



208 introduction to theoretical computer science

10 How many functions from {0, 1}𝑛 to {0, 1}𝑚 exist?

11 Follow the proof of Theorem 5.5, replacing the use
of the counting argument with Exercise 5.4.

12 Using the adjacency list representation, a graph
with 𝑛 in-degree zero vertices and 𝑠 in-degree two
vertices can be represented using roughly 2𝑠 log(𝑠 +
𝑛) ≤ 2𝑠(log 𝑠 + 𝑂(1)) bits. The labeling of the 𝑛 input
and 𝑚 output vertices can be specified by a list of 𝑛
labels in [𝑛] and 𝑚 labels in [𝑚].
13 Hint: Use the results of Exercise 5.6 and the fact that
in this regime 𝑚 = 1 and 𝑛 ≪ 𝑠.

14 Hint: An equivalent way to say this is that you
need to prove that the set of functions that can be
computed using at most 2𝑛/(1000𝑛) has fewer than
2−10022𝑛 elements. Can you see why?

Exercise 5.3 — Equal to constant function. For every 𝑘 ∈ ℕ and 𝑥′ ∈ {0, 1}𝑘,
show that there is an 𝑂(𝑘) line NAND-CIRC program that computes
the function EQUALS𝑥′ ∶ {0, 1}𝑘 → {0, 1} that on input 𝑥 ∈ {0, 1}𝑘

outputs 1 if and only if 𝑥 = 𝑥′.
�

Exercise 5.4 — Counting lower bound for multibit functions. Prove that there
exist a number 𝛿 > 0 such that for every 𝑛, 𝑚 there exists a function
𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 that requires at least 𝛿𝑚 ⋅ 2𝑛/𝑛 NAND gates to
compute. See footnote for hint.10

�

Exercise 5.5 — Size hierarchy theorem for multibit functions. Prove that there
exists a number 𝐶 such that for every 𝑛, 𝑚 and 𝑛+𝑚 < 𝑠 < 𝑚⋅2𝑛/(𝐶𝑛)
there exists a function 𝑓 ∈ SIZE𝑛,𝑚(𝐶 ⋅ 𝑠) ⧵ SIZE𝑛,𝑚(𝑠). See footnote for
hint.11

�

Exercise 5.6 — Efficient representation of circuits and a tighter counting upper

bound. Use the ideas of Remark 5.4 to show that for every 𝜖 > 0 and
sufficiently large 𝑠, 𝑛, 𝑚,

|SIZE𝑛,𝑚(𝑠)| < 2(2+𝜖)𝑠 log 𝑠+𝑛 log𝑛+𝑚 log 𝑠 . (5.11)

Conclude that the implicit constant in Theorem 5.2 can be made arbi-
trarily close to 5. See footnote for hint.12

�

Exercise 5.7 — Tighter counting lower bound. Prove that for every 𝛿 < 1/2, if
𝑛 is sufficiently large then there exists a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}
such that 𝑓 ∉ SIZE𝑛,1 ( 𝛿2𝑛

𝑛 ). See footnote for hint.13
�

Exercise 5.8 — Random functions are hard. Suppose 𝑛 > 1000 and that we
choose a function 𝐹 ∶ {0, 1}𝑛 → {0, 1} at random, choosing for every
𝑥 ∈ {0, 1}𝑛 the value 𝐹(𝑥) to be the result of tossing an independent
unbiased coin. Prove that the probability that there is a 2𝑛/(1000𝑛)
line program that computes 𝐹 is at most 2−100.14

�

Exercise 5.9 The following is a tuple representing a NAND program:
(3, 1, ((3, 2, 2), (4, 1, 1), (5, 3, 4), (6, 2, 1), (7, 6, 6), (8, 0, 0), (9, 7, 8), (10, 5, 0), (11, 9, 10)).

1. Write a table with the eight values 𝑃(000), 𝑃(001), 𝑃(010), 𝑃(011),
𝑃(100), 𝑃(101), 𝑃(110), 𝑃(111) in this order.

2. Describe what the programs does in words.

�
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15 Note that if 𝑛 is big enough, then it is easy to
represent such a pair using 𝑛2 bits, since we can
represent the program using 𝑂(𝑛1.1 log𝑛) bits, and
we can always pad our representation to have exactly
𝑛2 length.

16 Hint: Use our bound on the number of program-
s/circuits of size 𝑠 (Theorem 5.2), as well as the
Chernoff Bound ( Theorem 17.11) and the union
bound.

Exercise 5.10 — EVAL with XOR. For every sufficiently large 𝑛, let 𝐸𝑛 ∶
{0, 1}𝑛2 → {0, 1} be the function that takes an 𝑛2-length string that
encodes a pair (𝑃 , 𝑥) where 𝑥 ∈ {0, 1}𝑛 and 𝑃 is a NAND program
of 𝑛 inputs, a single output, and at most 𝑛1.1 lines, and returns the
output of 𝑃 on 𝑥.15 That is, 𝐸𝑛(𝑃 , 𝑥) = 𝑃(𝑥).

Prove that for every sufficiently large 𝑛, there does not exist an XOR
circuit 𝐶 that computes the function 𝐸𝑛, where a XOR circuit has the
XOR gate as well as the constants 0 and 1 (see Exercise 3.5). That is,
prove that there is some constant 𝑛0 such that for every 𝑛 > 𝑛0 and
XOR circuit 𝐶 of 𝑛2 inputs and a single output, there exists a pair
(𝑃 , 𝑥) such that 𝐶(𝑃 , 𝑥) ≠ 𝐸𝑛(𝑃 , 𝑥).

�

Exercise 5.11 — Learning circuits (challenge, optional, assumes more background).

(This exercise assumes background in probability theory and/or
machine learning that you might not have at this point. Feel free
to come back to it at a later point and in particular after going over
Chapter 17.) In this exercise we will use our bound on the number of
circuits of size 𝑠 to show that (if we ignore the cost of computation)
every such circuit can be learned from not too many training samples.
Specifically, if we find a size-𝑠 circuit that classifies correctly a training
set of 𝑂(𝑠 log 𝑠) samples from some distribution 𝐷, then it is guaran-
teed to do well on the whole distribution 𝐷. Since Boolean circuits
model very many physical processes (maybe even all of them, if the
(controversial) physical extended Church-Turing thesis is true), this
shows that all such processes could be learned as well (again, ignor-
ing the computation cost of finding a classifier that does well on the
training data).

Let 𝐷 be any probability distribution over {0, 1}𝑛 and let 𝐶 be a
NAND circuit with 𝑛 inputs, one output, and size 𝑠 ≥ 𝑛. Prove that
there is some constant 𝑐 such that with probability at least 0.999 the
following holds: if 𝑚 = 𝑐𝑠 log 𝑠 and 𝑥0, … , 𝑥𝑚−1 are chosen indepen-
dently from 𝐷, then for every circuit 𝐶′ such that 𝐶′(𝑥𝑖) = 𝐶(𝑥𝑖) on
every 𝑖 ∈ [𝑚], Pr𝑥∼𝐷[𝐶′(𝑥) ≤ 𝐶(𝑥)] ≤ 0.99.

In other words, if 𝐶′ is a so called “empirical risk minimizer” that
agrees with 𝐶 on all the training examples 𝑥0, … , 𝑥𝑛−1, then it will
also agree with 𝐶 with high probability for samples drawn from the
distribution 𝐷 (i.e., it “generalizes”, to use Machine-Learning lingo).
See footnote for hint.16

�

5.9 BIBLIOGRAPHICAL NOTES

The EVAL function is usually known as universal circuit. The imple-
mentation we describe is not the most efficient known. Valiant [Val76]
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first showed a universal circuit of 𝑂(𝑛 log𝑛) size where 𝑛 is the size of
the input. Universal circuits have seen in recent years new motivations
due to their applications for cryptography, see [LMS16; GKS17] .

While we’ve seen that “most” functions mapping 𝑛 bits to one bit
require circuits of exponential size Ω(2𝑛/𝑛), we actually do not know
of any explicit function for which we can prove that it requires, say,
at least 𝑛100 or even 100𝑛 size. At the moment, strongest such lower
bound we know is that there are quite simple and explicit 𝑛-variable
functions that require at least (5 − 𝑜(1))𝑛 lines to compute, see this
paper of Iwama et al as well as this more recent work of Kulikov et al.
Proving lower bounds for restricted models of circuits is an extremely
interesting research area, for which Jukna’s book [Juk12] (see also
Wegener [Weg87]) provides very good introduction and overview. I
learned of the proof of the size hierarchy theorem (Theorem 5.5) from
Sasha Golovnev.

Scott Aaronson’s blog post on how information is physical is a good
discussion on issues related to the physical extended Church-Turing
Physics. Aaronson’s survey on NP complete problems and physical
reality is also a great source for some of these issues, though might be
easier to read after we reach Chapter 14 on NP and NP-completeness.

http://www.wisdom.weizmann.ac.il/~ranraz/publications/P5nlb.pdf
http://www.wisdom.weizmann.ac.il/~ranraz/publications/P5nlb.pdf
http://logic.pdmi.ras.ru/~kulikov/papers/2012_5n_lower_bound_cie.pdf
http://www.scottaaronson.com/blog/?p=3327
http://www.arxiv.org/abs/quant-ph/0502072
http://www.arxiv.org/abs/quant-ph/0502072
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