
Figure 3.1: Calculating wheels by Charles Babbage.
Image taken from the Mark I ‘operating manual’

Figure 3.2: A 1944 Popular Mechanics article on the
Harvard Mark I computer.

3
Defining computation

“there is no reason why mental as well as bodily labor
should not be economized by the aid of machinery”,
Charles Babbage, 1852

“If, unwarned by my example, any man shall undertake
and shall succeed in constructing an engine embody-
ing in itself the whole of the executive department of
mathematical analysis upon different principles or by
simpler mechanical means, I have no fear of leaving my
reputation in his charge, for he alone will be fully able to
appreciate the nature of my efforts and the value of their
results.”, Charles Babbage, 1864

“To understand a program you must become both the
machine and the program.”, Alan Perlis, 1982

People have been computing for thousands of years, with aids
that include not just pen and paper, but also abacus, slide rules, vari-
ous mechanical devices, and modern electronic computers. A priori,
the notion of computation seems to be tied to the particular mech-
anism that you use. You might think that the “best” algorithm for
multiplying numbers will differ if you implement it in Python on a
modern laptop than if you use pen and paper. However, as we saw
in the introduction (Chapter 0), an algorithm that is asymptotically
better would eventually beat a worse one regardless of the underly-
ing technology. This gives us hope for a technology independent way
of defining computation. This is what we do in this chapter. We will
define the notion of computing an output from an input by applying a
sequence of basic operations (see Fig. 3.3). Using this, we will be able
to precisely define statements such as “function 𝑓 can be computed
by model 𝑋” or “function 𝑓 can be computed by model 𝑋 using 𝑠
operations”.

Compiled on 9.9.2019 22:55

Learning Objectives:
• See that computation can be precisely

modeled.
• Learn the computational model of Boolean

circuits / straight-line programs.
• Equivalence of circuits and straight-line

programs.
• Equivalence of AND/OR/NOT and NAND.
• Examples of computing in the physical world.

http://sites.harvard.edu/~chsi/markone/about.html

122 introduction to theoretical computer science

Figure 3.3: A function mapping strings to strings
specifies a computational task, i.e., describes what is
the desired relation between the input and the output.
In this chapter we define models for implementing
computational processes that achieve the desired
relation, i.e., describe how to compute the output
from the input. We will see several examples of such
models using both Boolean circuits and straight-line
programming languages.

Figure 3.4: Text pages from Algebra manuscript with
geometrical solutions to two quadratic equations.
Shelfmark: MS. Huntington 214 fol. 004v-005r

Figure 3.5: An explanation for children of the two digit
addition algorithm

3.1 DEFINING COMPUTATION

The name “algorithm” is derived from the Latin transliteration of
Muhammad ibn Musa al-Khwarizmi’s name. Al-Khwarizmi was a
Persian scholar during the 9th century whose books introduced the
western world to the decimal positional numeral system, as well as to
the solutions of linear and quadratic equations (see Fig. 3.4). However
Al-Khwarizmi’s descriptions of algorithms were rather informal by
today’s standards. Rather than use “variables” such as 𝑥, 𝑦, he used
concrete numbers such as 10 and 39, and trusted the reader to be
able to extrapolate from these examples, much as algorithms are still
taught to children today.

Here is how Al-Khwarizmi described the algorithm for solving an
equation of the form 𝑥2 + 𝑏𝑥 = 𝑐:

[How to solve an equation of the form] “roots and
squares are equal to numbers”: For instance “one square ,
and ten roots of the same, amount to thirty-nine dirhems”
that is to say, what must be the square which, when in-
creased by ten of its own root, amounts to thirty-nine?
The solution is this: you halve the number of the roots,
which in the present instance yields five. This you mul-
tiply by itself; the product is twenty-five. Add this to
thirty-nine’ the sum is sixty-four. Now take the root of
this, which is eight, and subtract from it half the number
of roots, which is five; the remainder is three. This is the
root of the square which you sought for; the square itself
is nine.

For the purposes of this book, we will need a much more precise
way to describe algorithms. Fortunately (or is it unfortunately?), at
least at the moment, computers lag far behind school-age children

defining computation 123

in learning from examples. Hence in the 20th century people came
up with exact formalisms for describing algorithms, namely program-
ming languages. Here is al-Khwarizmi’s quadratic equation solving
algorithm described in the Python programming language:

from math import sqrt

#Pythonspeak to enable use of the sqrt function to compute

square roots.↪

def solve_eq(b,c):

return solution of x^2 + bx = c following Al

Khwarizmi's instructions↪

Al Kwarizmi demonstrates this for the case b=10 and

c= 39↪

val1 = b / 2.0 # "halve the number of the roots"

val2 = val1 * val1 # "this you multiply by itself"

val3 = val2 + c # "Add this to thirty-nine"

val4 = sqrt(val3) # "take the root of this"

val5 = val4 - val1 # "subtract from it half the number

of roots"↪

return val5 # "This is the root of the square which

you sought for"↪

Test: solve x^2 + 10*x = 39

print(solve_eq(10,39))

3.0

We can define algorithms informally as follows:

Informal definition of an algorithm: An algo-
rithm is a set of instructions for how to compute an
output from an input by following a sequence of
“elementary steps”.
An algorithm 𝐴 computes a function 𝐹 if for every
input 𝑥, if we follow the instructions of 𝐴 on the
input 𝑥, we obtain the output 𝐹(𝑥).

In this chapter we will make this informal definition precise using
the model of Boolean Circuits. We will show that Boolean Circuits
are equivalent in power to straight line programs that are written in
“ultra simple” programming languages that do not even have loops.
We will also see that the particular choice of elementary operations is
immaterial and many different choices yield models with equivalent
power (see Fig. 3.6). However, it will take us some time to get there.

124 introduction to theoretical computer science

We will start by discussing what are “elementary operations” and how
we map a description of an algorithm into an actual physical process
that produces an output from an input in the real world.

Figure 3.6: An overview of the computational models
defined in this chapter. We will show several equiv-
alent ways to represent a recipe for performing a
finite computation. Specifically we will show that we
can model such a computation using either a Boolean
circuit or a straight line program, and these two repre-
sentations are equivalent to one another. We will also
show that we can choose as our basic operations ei-
ther the set {AND,OR,NOT} or the set {NAND} and
these two choices are equivalent in power. By making
the choice of whether to use circuits or programs,
and whether to use {AND,OR,NOT} or {NAND} we
obtain four equivalent ways of modeling finite com-
putation. Moreover, there are many other choices of
sets of basic operations that are equivalent in power.

3.2 COMPUTING USING AND, OR, AND NOT.

An algorithm breaks down a complex calculation into a series of sim-
pler steps. These steps can be executed in a variety of different ways,
including:

• Writing down symbols on a piece of paper.

• Modifying the current flowing on electrical wires.

• Binding a protein to a strand of DNA.

• Responding to a stimulus by a member of a collection (e.g., a bee in
a colony, a trader in a market).

To formally define algorithms, let us try to “err on the side of sim-
plicity” and model our “basic steps” as truly minimal. For example,
here are some very simple functions:

• OR ∶ {0, 1}2 → {0, 1} defined as

OR(𝑎, 𝑏) =
⎧{
⎨{⎩

0 𝑎 = 𝑏 = 0
1 otherwise

(3.1)

• AND ∶ {0, 1}2 → {0, 1} defined as

AND(𝑎, 𝑏) =
⎧{
⎨{⎩

1 𝑎 = 𝑏 = 1
0 otherwise

(3.2)

defining computation 125

• NOT ∶ {0, 1} → {0, 1} defined as

NOT(𝑎) =
⎧{
⎨{⎩

0 𝑎 = 1
1 𝑎 = 0

(3.3)

The functions AND, OR and NOT, are the basic logical operators
used in logic and many computer system. In the context of logic, it is
common to use the notation 𝑎 ∧ 𝑏 for AND(𝑎, 𝑏), 𝑎 ∨ 𝑏 for OR(𝑎, 𝑏) and
𝑎 and ¬𝑎 for NOT(𝑎), and we will use this notation as well.

Each one of the functions AND,OR,NOT takes either one or two
single bits as input, and produces a single bit as output. Clearly, it
cannot get much more basic than that. However, the power of compu-
tation comes from composing such simple building blocks together.

� Example 3.1 — Majority from 𝐴𝑁𝐷,𝑂𝑅 and 𝑁𝑂𝑇 . Consider the func-
tion MAJ ∶ {0, 1}3 → {0, 1} that is defined as follows:

MAJ(𝑥) =
⎧{
⎨{⎩

1 𝑥0 + 𝑥1 + 𝑥2 ≥ 2
0 otherwise

. (3.4)

That is, for every 𝑥 ∈ {0, 1}3, MAJ(𝑥) = 1 if and only if the ma-
jority (i.e., at least two out of the three) of 𝑥’s elements are equal
to 1. Can you come up with a formula involving AND, OR and
NOT to compute MAJ? (It would be useful for you to pause at this
point and work out the formula for yourself. As a hint, although
the NOT operator is needed to compute some functions, you will
not need to use it to compute MAJ.)

Let us first try to rephrase MAJ(𝑥) in words: “MAJ(𝑥) = 1 if and
only if there exists some pair of distinct elements 𝑖, 𝑗 such that both
𝑥𝑖 and 𝑥𝑗 are equal to 1.” In other words it means that MAJ(𝑥) = 1
iff either both 𝑥0 = 1 and 𝑥1 = 1, or both 𝑥1 = 1 and 𝑥2 = 1, or both
𝑥0 = 1 and 𝑥2 = 1. Since the OR of three conditions 𝑐0, 𝑐1, 𝑐2 can
be written as OR(𝑐0,OR(𝑐1, 𝑐2)), we can now translate this into a
formula as follows:

MAJ(𝑥0, 𝑥1, 𝑥2) = OR (AND(𝑥0, 𝑥1) , OR(AND(𝑥1, 𝑥2) , AND(𝑥0, 𝑥2))) .
(3.5)

Recall that we can also write 𝑎 ∨ 𝑏 for OR(𝑎, 𝑏) and 𝑎 ∧ 𝑏 for
AND(𝑎, 𝑏). With this notation, (3.5) can also be written as

MAJ(𝑥0, 𝑥1, 𝑥2) = ((𝑥0 ∧ 𝑥1) ∨ (𝑥1 ∧ 𝑥2)) ∨ (𝑥0 ∧ 𝑥3) . (3.6)

126 introduction to theoretical computer science

We can also write (3.5) in a “programming language” format,
expressing it as a set of instructions for computing MAJ given the
basic operations AND,OR,NOT:

def MAJ(X[0],X[1],X[2]):

firstpair = AND(X[0],X[1])

secondpair = AND(X[1],X[2])

thirdpair = AND(X[0],X[2])

temp = OR(secondpair,thirdpair)

return OR(firstpair,temp)

3.2.1 Some properties of AND and OR
Like standard addition and multiplication, the functions AND and OR
satisfy the properties of commutativity: 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 and 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎
and associativity: (𝑎∨𝑏)∨𝑐 = 𝑎∨(𝑏∨𝑐) and (𝑎∧𝑏)∧𝑐 = 𝑎∧(𝑏∧𝑐). As in
the case of addition and multiplication, we often drop the parenthesis
and write 𝑎∨𝑏∨𝑐 ∨𝑑 for ((𝑎∨𝑏)∨𝑐)∨𝑑, and similarly OR’s and AND’s
of more terms. They also satisfy a variant of the distributive law:

Solved Exercise 3.1 — Distributive law for AND and OR. Prove that for every
𝑎, 𝑏, 𝑐 ∈ {0, 1}, 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐).

�

Solution:

We can prove this by enumerating over all the 8 possible values
for 𝑎, 𝑏, 𝑐 ∈ {0, 1} but it also follows from the standard distributive
law. Suppose that we identify any positive integer with “true” and
the value zero with “false”. Then for every numbers 𝑢, 𝑣 ∈ ℕ, 𝑢 + 𝑣
is positive if and only if 𝑢 ∨ 𝑣 is true and 𝑢 ⋅ 𝑣 is positive if and only
if 𝑢 ∧ 𝑣 is true. This means that for every 𝑎, 𝑏, 𝑐 ∈ {0, 1}, the expres-
sion 𝑎 ∧ (𝑏 ∨ 𝑐) is true if and only if 𝑎 ⋅ (𝑏 + 𝑐) is positive, and the
expression (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) is true if and only if 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 is positive,
But by the standard distributive law 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 and
hence the former expression is true if and only if the latter one is.

�

3.2.2 Extended example: Computing XOR from AND, OR, and NOT
Let us see how we can obtain a different function from the same
building blocks. Define XOR ∶ {0, 1}2 → {0, 1} to be the function
XOR(𝑎, 𝑏) = 𝑎 + 𝑏 mod 2. That is, XOR(0, 0) = XOR(1, 1) = 0 and
XOR(1, 0) = XOR(0, 1) = 1. We claim that we can construct XOR
using only AND, OR, and NOT.

P

defining computation 127

As usual, it is a good exercise to try to work out the
algorithm for XOR using AND, OR and NOT on your
own before reading further.

The following algorithm computes XOR using AND, OR, and NOT:

Algorithm 3.2 — 𝑋𝑂𝑅 from 𝐴𝑁𝐷/𝑂𝑅/𝑁𝑂𝑇 .

Input: 𝑎, 𝑏 ∈ {0, 1}.
Output: 𝑋𝑂𝑅(𝑎, 𝑏)
1: 𝑤1 ← 𝐴𝑁𝐷(𝑎, 𝑏)
2: 𝑤2 ← 𝑁𝑂𝑇 (𝑤1)
3: 𝑤3 ← 𝑂𝑅(𝑎, 𝑏)
4: return 𝐴𝑁𝐷(𝑤2, 𝑤3)

Lemma 3.3 For every 𝑎, 𝑏 ∈ {0, 1}, on input 𝑎, 𝑏, Algorithm 3.2 outputs
𝑎 + 𝑏 mod 2.

Proof. For every 𝑎, 𝑏, XOR(𝑎, 𝑏) = 1 if and only if 𝑎 is different from
𝑏. On input 𝑎, 𝑏 ∈ {0, 1}, Algorithm 3.2 outputs AND(𝑤2, 𝑤3) where
𝑤2 = NOT(AND(𝑎, 𝑏)) and 𝑤3 = OR(𝑎, 𝑏).

• If 𝑎 = 𝑏 = 0 then 𝑤3 = OR(𝑎, 𝑏) = 0 and so the output will be 0.

• If 𝑎 = 𝑏 = 1 then AND(𝑎, 𝑏) = 1 and so 𝑤2 = NOT(AND(𝑎, 𝑏)) = 0
and the output will be 0.

• If 𝑎 = 1 and 𝑏 = 0 (or vice versa) then both 𝑤3 = OR(𝑎, 𝑏) = 1
and 𝑤1 = AND(𝑎, 𝑏) = 0, in which case the algorithm will output
OR(NOT(𝑤1), 𝑤3) = 1.

�

We can also express Algorithm 3.2 using a programming language.
Specifically, the following is a Python program that computes the XOR
function:

def AND(a,b): return a*b

def OR(a,b): return 1-(1-a)*(1-b)

def NOT(a): return 1-a

def XOR(a,b):

w1 = AND(a,b)

w2 = NOT(w1)

w3 = OR(a,b)

return AND(w2,w3)

Test out the code

128 introduction to theoretical computer science

print([f"XOR({a},{b})={XOR(a,b)}" for a in [0,1] for b in

[0,1]])↪

['XOR(0,0)=0', 'XOR(0,1)=1', 'XOR(1,0)=1', 'XOR(1,1)=0']

Solved Exercise 3.2 — Compute 𝑋𝑂𝑅 on three bits of input. Let XOR3 ∶
{0, 1}3 → {0, 1} be the function defined as XOR3(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 + 𝑐
mod 2. That is, XOR3(𝑎, 𝑏, 𝑐) = 1 if 𝑎+𝑏+𝑐 is odd, and XOR3(𝑎, 𝑏, 𝑐) =
0 otherwise. Show that you can compute XOR3 using AND, OR, and
NOT. You can express it as a formula, use a programming language
such as Python, or use a Boolean circuit.

�

Solution:

Addition modulo two satisfies the same properties of associativ-
ity ((𝑎 + 𝑏) + 𝑐 = (𝑎 + 𝑏) + 𝑐) and commutativity (𝑎 + 𝑏 = 𝑏 + 𝑎) as
standard addition. This means that, if we define 𝑎 ⊕ 𝑏 to equal 𝑎 + 𝑏
mod 2, then

XOR3(𝑎, 𝑏, 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐 (3.7)

or in other words

XOR3(𝑎, 𝑏, 𝑐) = XOR(XOR(𝑎, 𝑏), 𝑐) . (3.8)

Since we know how to compute XOR using AND, OR, and
NOT, we can compose this to compute XOR3 using the same build-
ing blocks. In Python this corresponds to the following program:

def XOR3(a,b,c):

w1 = AND(a,b)

w2 = NOT(w1)

w3 = OR(a,b)

w4 = AND(w2,w3)

w5 = AND(w4,c)

w6 = NOT(w5)

w7 = OR(w4,c)

return AND(w6,w7)

Let's test this out

print([f"XOR3({a},{b},{c})={XOR3(a,b,c)}" for a in [0,1]

for b in [0,1] for c in [0,1]])↪

['XOR3(0,0,0)=0', 'XOR3(0,0,1)=1', 'XOR3(0,1,0)=1',

'XOR3(0,1,1)=0', 'XOR3(1,0,0)=1', 'XOR3(1,0,1)=0',

'XOR3(1,1,0)=0', 'XOR3(1,1,1)=1']

↪

↪

�

defining computation 129

P
Try to generalize the above examples to obtain a way
to compute XOR𝑛 ∶ {0, 1}𝑛 → {0, 1} for every 𝑛 us-
ing at most 4𝑛 basic steps involving applications of a
function in {AND,OR,NOT} to outputs or previously
computed values.

3.2.3 Informally defining “basic operations” and “algorithms”
We have seen that we can obtain at least some examples of interesting
functions by composing together applications of AND, OR, and NOT.
This suggests that we can use AND, OR, and NOT as our “basic opera-
tions”, hence obtaining the following definition of an “algorithm”:

Semi-formal definition of an algorithm: An al-
gorithm consists of a sequence of steps of the form
“compute a new value by applying AND, OR, or
NOT to previously computed values”.
An algorithm 𝐴 computes a function 𝐹 if for every
input 𝑥 to 𝐹 , if we feed 𝑥 as input to the algorithm,
the value computed in its last step is 𝐹(𝑥).

There are several concerns that are raised by this definition:

1. First and foremost, this definition is indeed too informal. We do not
specify exactly what each step does, nor what it means to “feed 𝑥 as
input”.

2. Second, the choice of AND, OR or NOT seems rather arbitrary.
Why not XOR and MAJ? Why not allow operations like addition
and multiplication? What about any other logical constructions
such if/then or while?

3. Third, do we even know that this definition has anything to do
with actual computing? If someone gave us a description of such an
algorithm, could we use it to actually compute the function in the
real world?

P
These concerns will to a large extent guide us in the
upcoming chapters. Thus you would be well advised
to re-read the above informal definition and see what
you think about these issues.

A large part of this book will be devoted to addressing the above
issues. We will see that:

130 introduction to theoretical computer science

Figure 3.7: Standard symbols for the logical operations
or “gates” of AND, OR, NOT, as well as the operation
NAND discussed in Section 3.5.

Figure 3.8: A circuit with AND, OR and NOT gates for
computing the XOR function.

1. We can make the definition of an algorithm fully formal, and so
give a precise mathematical meaning to statements such as “Algo-
rithm 𝐴 computes function 𝑓”.

2. While the choice of AND/OR/NOT is arbitrary, and we could just
as well chose some other functions, we will also see this choice
does not matter much. We will see that the we would obtain the
same computational power if we used instead for addition and
multiplication, and essentially every other operation that could be
reasonably thought of as a basic step.

3. It turns out that we can and do compute such “AND/OR/NOT
based algorithms” in the real world. First of all, such an algorithm
is clearly well specified, and so can be executed by a human with a
pen and paper. Second, there are a variety of ways to mechanize this
computation. We’ve already seen that we can write Python code
that corresponds to following such a list of instructions. But in fact
we can directly implement operations such as AND, OR, and NOT
via electronic signals using components known as transistors. This is
how modern electronic computers operate.

In the remainder of this chapter, and the rest of this book, we will
begin to answer some of these questions. We will see more examples
of the power of simple operations to compute more complex opera-
tions including addition, multiplication, sorting and more. We will
also discuss how to physically implement simple operations such as
AND, OR and NOT using a variety of technologies.

3.3 BOOLEAN CIRCUITS

Boolean circuits provide a precise notion of “composing basic opera-
tions together”. A Boolean circuit (see Fig. 3.9) is composed of gates
and inputs that are connected by wires. The wires carry a signal that
represents either the value 0 or 1. Each gate corresponds to either the
OR, AND, or NOT operation. An OR gate has two incoming wires,
and one or more outgoing wires. If these two incoming wires carry
the signals 𝑎 and 𝑏 (for 𝑎, 𝑏 ∈ {0, 1}), then the signal on the outgo-
ing wires will be OR(𝑎, 𝑏). AND and NOT gates are defined simi-
larly. The inputs have only outgoing wires. If we set a certain input
to a value 𝑎 ∈ {0, 1}, then this value is propagated on all the wires
outgoing from it. We also designate some gates as output gates, and
their value corresponds to the result of evaluating the circuit. For ex-
ample, Fig. 3.8 gives such a circuit for the XOR function, following
Section 3.2.2. We evaluate an 𝑛-input Boolean circuit 𝐶 on an input
𝑥 ∈ {0, 1}𝑛 by placing the bits of 𝑥 on the inputs, and then propagat-
ing the values on the wires until we reach an output, see Fig. 3.9.

defining computation 131

Figure 3.10: A Boolean circuit for computing the all
equal function ALLEQ ∶ {0, 1}4 → {0, 1} that outputs
1 on 𝑥 ∈ {0, 1}4 if and only if 𝑥0 = 𝑥1 = 𝑥2 = 𝑥3.

R
Remark 3.4 — Physical realization of Boolean circuits.
Boolean circuits are a mathematical model that does not
necessarily correspond to a physical object, but they
can be implemented physically. In physical imple-
mentation of circuits, the signal is often implemented
by electric potential or voltage on a wire, where for
example voltage above a certain level is interpreted
as a logical value of 1, and below a certain level is
interpreted as a logical value of 0. Section 3.4 dis-
cusses physical implementation of Boolean circuits
(with examples including using electrical signals such
as in silicon-based circuits, but also biological and
mechanical implementations as well).

Figure 3.9: A Boolean Circuit consists of gates that are
are connected by wires to one another and the inputs.
The left side depicts a circuit with 2 inputs and 5
gates, one of which is designated the output gate.
The right side depicts the evaluation of this circuit
on the input 𝑥 ∈ {0, 1}2 with 𝑥0 = 1 and 𝑥1 = 0.
The value of every gate is obtained by applying the
corresponding function (AND, OR, or NOT) to values
on the wire(s) that enter it. The output of the circuit
on a given input is the value of the output gate(s). In
this case, the circuit computes the XOR function and
hence it outputs 1 on the input 10.

Solved Exercise 3.3 — All equal function. Define ALLEQ ∶ {0, 1}4 → {0, 1}
to be the function that on input 𝑥 ∈ {0, 1}4 outputs 1 if and only if
𝑥0 = 𝑥1 = 𝑥2 = 𝑥3. Give a Boolean circuit for computing ALLEQ.

�

Solution:

Another way to describe the function ALLEQ is that it outputs
1 on an input 𝑥 ∈ {0, 1}4 if and only if 𝑥 = 04 or 𝑥 = 14. We can
phrase the condition 𝑥 = 14 as 𝑥0 ∧ 𝑥1 ∧ 𝑥2 ∧ 𝑥3 which can be
computed using three AND gates. Similarly we can phrase the con-
dition 𝑥 = 04 as 𝑥0 ∧ 𝑥1 ∧ 𝑥2 ∧ 𝑥3 which can be computed using four
NOT gates and three AND gates. The output of ALLEQ is the OR
of these two conditions, which results in the circuit of 4 NOT gates,
6 AND gates, and one OR gate presented in Fig. 3.10.

�

3.3.1 Boolean circuits: a formal definition
We defined Boolean circuits informally as obtained by connecting
AND, OR, and NOT gates via wires so as to produce an output from
an input. However, to be able to prove theorems about the existence or

https://goo.gl/gntTQE

132 introduction to theoretical computer science

non-existence of Boolean circuits for computing various functions we
need to:

1. Formally define a Boolean circuit as a mathematical object.

2. Formally define what it means for a circuit 𝐶 to compute a function
𝑓 .

We now proceed to do so. We will define a Boolean circuit as a
labeled Directed Acyclic Graph (DAG). The vertices of the graph corre-
spond to the gates and inputs of the circuit, and the edges of the graph
correspond to the wires. A wire from an input or gate 𝑢 to a gate 𝑣 in
the circuit corresponds to a directed edge between the corresponding
vertices. The inputs are vertices with no incoming edges, while each
gate has the appropriate number of incoming edges based on the func-
tion it computes. (That is, AND and OR gates have two in-neighbors,
while NOT gates have one in-neighbor.) The formal definition is as
follows (see also Fig. 3.11):

Figure 3.11: A Boolean Circuit is a labeled directed
acyclic graph (DAG). It has 𝑛 input vertices, which
are marked with X[0],…, X[𝑛 − 1] and have no
incoming edges, and the rest of the vertices are gates.
An AND, OR, or NOT gate has two or one incoming
edges. If the circuit has 𝑚 outputs, then 𝑚 of the
gates are known as outputs and are marked with
Y[0],…,Y[𝑚−1]. When we evaluate a circuit 𝐶 on an
input 𝑥 ∈ {0, 1}𝑛, we start by setting the value of the
input vertices to 𝑥0, … , 𝑥𝑛−1 and then propagate the
values, assigning to each gate 𝑔 the result of applying
the operation of 𝑔 to the values of 𝑔’s in-neighbors.
The output of the circuit is the value assigned to the
output gates.

Definition 3.5 — Boolean Circuits. Let 𝑛, 𝑚, 𝑠 be positive integers with
𝑠 ≥ 𝑚. A Boolean circuit with 𝑛 inputs, 𝑚 outputs, and 𝑠 gates, is a
labeled directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸) with 𝑠+𝑛 vertices
satisfying the following properties:

• Exactly 𝑛 of the vertices have no in-neighbors. These vertices
are known as inputs and are labeled with the 𝑛 labels X[0], …,
X[𝑛 − 1].

defining computation 133

• The other 𝑠 vertices are known as gates. Each gate is labeled with
∧, ∨ or ¬. Gates labeled with ∧ (AND) or ∨ (OR) have two in-
neighbors. Gates labeled with ¬ (NOT) have one in-neighbor.
We will allow parallel edges (and so for example an AND gate
can have both its in-neighbors be the same vertex).

• Exactly 𝑚 of the gates are also labeled with the 𝑚 labels Y[0], …,
Y[𝑚 − 1] (in addition to their label ∧/∨/¬). These are known as
outputs.

P
This is a non-trivial mathematical definition, so it is
worth taking the time to read it slowly and carefully.
As in all mathematical definitions, we are using a
known mathematical object — a directed acyclic graph
(DAG) — to define a new object, a Boolean circuit.
This might be a good time to review some of the basic
properties of DAGs and in particular the fact that they
can be topologically sorted, see Section 1.6.

If 𝐶 is a circuit with 𝑛 inputs and 𝑚 outputs, and 𝑥 ∈ {0, 1}𝑛, then
we can compute the output of 𝐶 on the input 𝑥 in the natural way:
assign the input vertices X[0], …, X[𝑛 − 1] the values 𝑥0, … , 𝑥𝑛−1,
apply each gate on the values of its in-neighbors, and then output the
values that correspond to the output vertices. Formally, this is defined
as follows:

Definition 3.6 — Computing a function via a Boolean circuit. Let 𝐶 be a
Boolean circuit with 𝑛 inputs and 𝑚 outputs. For every 𝑥 ∈ {0, 1}𝑛,
the output of 𝐶 on the input 𝑥, denoted by 𝐶(𝑥), is defined as the
result of the following process:

We let ℎ ∶ 𝑉 → ℕ be the minimal layering of 𝐶 (aka topological
sorting, see Theorem 1.26). We let 𝐿 be the maximum layer of ℎ,
and for ℓ = 0, 1, … , 𝐿 we do the following:

• For every 𝑣 in the ℓ-th layer (i.e., 𝑣 such that ℎ(𝑣) = ℓ) do:

– If 𝑣 is an input vertex labeled with X[𝑖] for some 𝑖 ∈ [𝑛], then
we assign to 𝑣 the value 𝑥𝑖.

– If 𝑣 is a gate vertex labeled with ∧ and with two in-neighbors
𝑢, 𝑤 then we assign to 𝑣 the AND of the values assigned to
𝑢 and 𝑤. (Since 𝑢 and 𝑤 are in-neighbors of 𝑣, they are in
lower layer than 𝑣, and hence their values have already been
assigned.)

134 introduction to theoretical computer science

– If 𝑣 is a gate vertex labeled with ∨ and with two in-neighbors
𝑢, 𝑤 then we assign to 𝑣 the OR of the values assigned to 𝑢
and 𝑤.

– If 𝑣 is a gate vertex labeled with ¬ and with one in-neighbor 𝑢
then we assign to 𝑣 the negation of the value assigned to 𝑢.

• The result of this process is the value 𝑦 ∈ {0, 1}𝑚 such that for
every 𝑗 ∈ [𝑚], 𝑦𝑗 is the value assigned to the vertex with label
Y[𝑗].

Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚. We say that the circuit 𝐶 computes 𝑓 if
for every 𝑥 ∈ {0, 1}𝑛, 𝐶(𝑥) = 𝑓(𝑥).

3.3.2 Equivalence of circuits and straight-line programs
We have seen two ways to describe how to compute a function 𝑓 using
AND, OR and NOT:

• A Boolean circuit, defined in Definition 3.5, computes 𝑓 by connect-
ing via wires AND, OR, and NOT gates to the inputs.

• We can also describe such a computation using a straight-line
program that has lines of the form foo = AND(bar,blah), foo =

OR(bar,blah) and foo = NOT(bar) where foo, bar and blah are
variable names. (We call this a straight-line program since it contains
no loops or branching (e.g., if/then) statements.)

We now formally define the AON-CIRC programming language
(“AON” stands for AND/OR/NOT) which has the above operations,
and show that it is equivalent to Boolean circuits.

Definition 3.7 — AON-CIRC Programming language. An AON-CIRC pro-
gram is a string of lines of the form foo = AND(bar,blah), foo
= OR(bar,blah) and foo = NOT(bar) where foo, bar and blah

are variable names. 1 Variables of the form X[𝑖] are known as
input variables, and variables of the form Y[𝑗] are known as output
variables. In every line, the variables on the righthand side of the
assignment operators must either be input variables or variables
that have already been assigned a value before.

If an AON-CIRC program 𝑃 has input variables X[0],…,X[𝑛 − 1]
and output variables Y[0],…, Y[𝑚 − 1] then for every 𝑥 ∈ {0, 1}𝑛,
we define the output of 𝑃 on input 𝑥, denoted by 𝑃(𝑥), to be the
string 𝑦 ∈ {0, 1}𝑚 corresponding to the values of the output vari-
ables Y[0] ,…, Y[𝑚 − 1] in the execution of 𝑃 where we initialize
the input variables X[0],…,X[𝑛 − 1] to the values 𝑥0, … , 𝑥𝑛−1.

defining computation 135

1 We follow the common programming languages
convention of using names such as foo, bar, baz,
blah as stand-ins for generic identifiers. A variable
identifier in our programming language can be
any combination of letters, numbers, underscores,
and brackets. The appendix contains a full formal
specification of our programming language.

We say that such an AON-CIRC program 𝑃 computes a function
𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 if 𝑃(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ {0, 1}𝑛.

AON-CIRC is not a practical programming language: it was de-
signed for pedagogical purposes only, as a way to model computation
as composition of AND, OR, and NOT. However, AON-CIRC can still
be easily implemented on a computer. The following solved exercise
gives an example of an AON-CIRC program.

Solved Exercise 3.4 Consider the following function CMP ∶ {0, 1}4 →
{0, 1} that on four input bits 𝑎, 𝑏, 𝑐, 𝑑 ∈ {0, 1}, outputs 1 iff the number
represented by (𝑎, 𝑏) is larger than the number represented by (𝑐, 𝑑).
That is CMP(𝑎, 𝑏, 𝑐, 𝑑) = 1 iff 2𝑎 + 𝑏 > 2𝑐 + 𝑑.

Write an AON-CIRC program to compute CMP.
�

Solution:

Writing such a program is tedious but not truly hard. To com-
pare two numbers we first compare their most significant digit,
and then go down to the next digit and so on and so forth. In this
case where the numbers have just two binary digits, these compar-
isons are particularly simple. The number represented by (𝑎, 𝑏) is
larger than the number represented by (𝑐, 𝑑) if and only if one of
the following conditions happens:

1. The most significant bit 𝑎 of (𝑎, 𝑏) is larger than the most signifi-
cant bit 𝑐 of (𝑐, 𝑑).

or

2. The two most significant bits 𝑎 and 𝑐 are equal, but 𝑏 > 𝑑.

Another way to express the same condition is the following: the
number (𝑎, 𝑏) is larger than (𝑐, 𝑑) iff 𝑎 > 𝑐 OR ((NOT (𝑐 < 𝑎))
AND 𝑏 > 𝑑).

For binary digits 𝛼, 𝛽, the condition 𝛼 > 𝛽 is simply that 𝛼 = 1
and 𝛽 = 0 or AND(𝛼,NOT(𝛽)) = 1. Together these observations
can be used to give the following AON-CIRC program to compute
CMP:

temp_1 = NOT(X[2])

temp_2 = OR(X[0],temp_1)

temp_3 = NOT(X[0])

temp_4 = OR(X[2],temp_3)

temp_5 = NOT(X[3])

https://goo.gl/QyHa3b
https://goo.gl/QyHa3b

136 introduction to theoretical computer science

Figure 3.12: A circuit for computing the CMP function.
The evaluation of this circuit on (1, 1, 1, 0) yields the
output 1, since the number 3 (represented in binary
as 11) is larger than the number 2 (represented in
binary as 10).

temp_6 = OR(X[1],temp_5)

temp_7 = AND(temp_6,temp_4)

Y[0] = OR(temp_2,temp_7)

We can also present this 8-line program as a circuit with 8 gates,
see Fig. 3.12.

�

It turns out that AON-CIRC programs and Boolean circuits have
exactly the same power:

Theorem 3.8 — Equivalence of circuits and straight-line programs. Let
𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 and 𝑠 ≥ 𝑚 be some number. Then 𝑓 is
computable by a Boolean circuit of 𝑠 gates if and only if 𝑓 is com-
putable by an AON-CIRC program of 𝑠 lines.

Proof Idea:

The idea is simple - AON-CIRC programs and Boolean circuits
are just different ways of describing the exact same computational
process. For example, an AND gate in a Boolean circuit corresponding
to computing the AND of two previously-computed values. In a AON-
CIRC program this will correspond to the line that stores in a variable
the AND of two previously-computed variables.

⋆

P
This proof of Theorem 3.8 is simple at heart, but all
the details it contains can make it a little cumbersome
to read. You might be better off trying to work it out
yourself before reading it. Our GitHub repository con-
tains a “proof by Python” of Theorem 3.8: implemen-
tation of functions circuit2prog and prog2circuits
mapping Boolean circuits to AON-CIRC programs and
vice versa.

Proof of Theorem 3.8. Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚. Since the theorem is an
“if and only if” statement, to prove it we need to show both directions:
translating an AON-CIRC program that computes 𝑓 into a circuit that
computes 𝑓 , and translating a circuit that computes 𝑓 into an AON-
CIRC program that does so.

We start with the first direction. Let 𝑃 be an 𝑠 line AON-CIRC that
computes 𝑓 . We define a circuit 𝐶 as follows: the circuit will have 𝑛
inputs and 𝑠 gates. For every 𝑖 ∈ [𝑠], if the 𝑖-th line has the form foo

= AND(bar,blah) then the 𝑖-th gate in the circuit will be an AND
gate that is connected to gates 𝑗 and 𝑘 where 𝑗 and 𝑘 correspond to
the last lines before 𝑖 where the variables bar and blah (respectively)

https://github.com/boazbk/tcscode

defining computation 137

Figure 3.13: Two equivalent descriptions of the same
AND/OR/NOT computation as both an AON pro-
gram and a Boolan circuit.

where written to. (For example, if 𝑖 = 57 and the last line bar was
written to is 35 and the last line blah was written to is 17 then the two
in-neighbors of gate 57 will be gates 35 and 17.) If either bar or blah is
an input variable then we connect the gate to the corresponding input
vertex instead. If foo is an output variable of the form Y[𝑗] then we
add the same label to the corresponding gate to mark it as an output
gate. We do the analogous operations if the 𝑖-th line involves an OR

or a NOT operation (except that we use the corresponding OR or NOT
gate, and in the latter case have only one in-neighbor instead of two).
For every input 𝑥 ∈ {0, 1}𝑛, if we run the program 𝑃 on 𝑥, then the
value written that is computed in the 𝑖-th line is exactly the value
that will be assigned to the 𝑖-th gate if we evaluate the circuit 𝐶 on 𝑥.
Hence 𝐶(𝑥) = 𝑃(𝑥) for every 𝑥 ∈ {0, 1}𝑛.

For the other direction, let 𝐶 be a circuit of 𝑠 gates and 𝑛 inputs that
computes the function 𝑓 . We sort the gates according to a topological
order and write them as 𝑣0, … , 𝑣𝑠−1. We now can create a program
𝑃 of 𝑠 lines as follows. For every 𝑖 ∈ [𝑠], if 𝑣𝑖 is an AND gate with
in-neighbors 𝑣𝑗, 𝑣𝑘 then we will add a line to 𝑃 of the form temp_𝑖 =
AND(temp_𝑗,temp_𝑘), unless one of the vertices is an input vertex or
an output gate, in which case we change this to the form X[.] or Y[.]
appropriately. Because we work in topological ordering, we are guar-
anteed that the in-neighbors 𝑣𝑗 and 𝑣𝑘 correspond to variables that
have already been assigned a value. We do the same for OR and NOT
gate. Once again, one can verify that for every input 𝑥, the value 𝑃(𝑥)
will equal 𝐶(𝑥) and hence the program computes the same function as
the circuit.

�

3.4 PHYSICAL IMPLEMENTATIONS OF COMPUTING DEVICES (DI-
GRESSION)

Computation is an abstract notion that is distinct from its physical
implementations. While most modern computing devices are obtained
by mapping logical gates to semi-conductor based transistors, over
history people have computed using a huge variety of mechanisms,
including mechanical systems, gas and liquid (known as fluidics),
biological and chemical processes, and even living creatures (e.g., see
Fig. 3.14 or this video for how crabs or slime mold can be used to do
computations).

In this section we will review some of these implementations, both
so you can get an appreciation of how it is possible to directly translate
Boolean circuits to the physical world, without going through the en-
tire stack of architecture, operating systems, and compilers, as well as
to emphasize that silicon-based processors are by no means the only

https://www.youtube.com/watch?v=czk4xgdhdY4

138 introduction to theoretical computer science

Figure 3.14: Crab-based logic gates from the paper
“Robust soldier-crab ball gate” by Gunji, Nishiyama
and Adamatzky. This is an example of an AND gate
that relies on the tendency of two swarms of crabs
arriving from different directions to combine to a
single swarm that continues in the average of the
directions.

Figure 3.15: We can implement the logic of transistors
using water. The water pressure from the gate closes
or opens a faucet between the source and the sink.

Figure 3.16: The number of transistors per integrated
circuits from 1959 till 1965 and a prediction that expo-
nential growth will continue at least another decade.
Figure taken from “Cramming More Components
onto Integrated Circuits”, Gordon Moore, 1965

Figure 3.17: Cartoon from Gordon Moore’s article
“predicting” the implications of radically improving
transistor density.

way to perform computation. Indeed, as we will see in Chapter 22,
a very exciting recent line of works involves using different media
for computation that would allow us to take advantage of quantum
mechanical effects to enable different types of algorithms.

3.4.1 Transistors
A transistor can be thought of as an electric circuit with two inputs,
known as source and gate and an output, known as the sink. The gate
controls whether current flows from the source to the sink. In a stan-
dard transistor, if the gate is “ON” then current can flow from the
source to the sink and if it is “OFF” then it can’t. In a complementary
transistor this is reversed: if the gate is “OFF” then current can flow
from the source to the sink and if it is “ON” then it can’t.

There are several ways to implement the logic of a transistor. For
example, we can use faucets to implement it using water pressure
(e.g. Fig. 3.15). This might seem as merely a curiosity but there is
a field known as fluidics concerned with implementing logical op-
erations using liquids or gasses. Some of the motivations include
operating in extreme environmental conditions such as in space or a
battlefield, where standard electronic equipment would not survive.

The standard implementations of transistors use electrical current.
One of the original implementations used vacuum tubes. As its name
implies, a vacuum tube is a tube containing nothing (i.e., a vacuum)
and where a priori electrons could freely flow from source (a wire) to
the sink (a plate). However, there is a gate (a grid) between the two,
where modulating its voltage can block the flow of electrons.

Early vacuum tubes were roughly the size of lightbulbs (and
looked very much like them too). In the 1950’s they were supplanted
by transistors, which implement the same logic using semiconduc-
tors which are materials that normally do not conduct electricity but
whose conductivity can be modified and controlled by inserting im-
purities (“doping”) and an external electric field (this is known as the
field effect). In the 1960’s computers were started to be implemented
using integrated circuits which enabled much greater density. In 1965,
Gordon Moore predicted that the number of transistors per integrated
circuit would double every year (see Fig. 3.16), and that this would
lead to “such wonders as home computers —or at least terminals con-
nected to a central computer— automatic controls for automobiles,
and personal portable communications equipment”. Since then, (ad-
justed versions of) this so-called “Moore’s law” have been running
strong, though exponential growth cannot be sustained forever, and
some physical limitations are already becoming apparent.

https://en.wikipedia.org/wiki/Fluidics
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

defining computation 139

Figure 3.18: The exponential growth in computing
power over the last 120 years. Graph by Steve Jurvet-
son, extending a prior graph of Ray Kurzweil.

Figure 3.19: Implementing logical gates using transis-
tors. Figure taken from Rory Mangles’ website.

Figure 3.20: Implementing a NAND gate (see Sec-
tion 3.5) using transistors.

Figure 3.21: Performance of DNA-based logic gates.
Figure taken from paper of Bonnet et al, Science, 2013.

3.4.2 Logical gates from transistors
We can use transistors to implement various Boolean functions such as
AND, OR, and NOT. For each a two-input gate 𝐺 ∶ {0, 1}2 → {0, 1},
such an implementation would be a system with two input wires 𝑥, 𝑦
and one output wire 𝑧, such that if we identify high voltage with “1”
and low voltage with “0”, then the wire 𝑧 will equal to “1” if and only
if applying 𝐺 to the values of the wires 𝑥 and 𝑦 is 1 (see Fig. 3.19 and
Fig. 3.20). This means that there exists a AND/OR/NOT circuit to
compute a function 𝑔 ∶ {0, 1}𝑛 → {0, 1}𝑚, then we can compute 𝑔 in
the physical world using transistors as well.

3.4.3 Biological computing
Computation can be based on biological or chemical systems. For ex-
ample the lac operon produces the enzymes needed to digest lactose
only if the conditions 𝑥 ∧ (¬𝑦) hold where 𝑥 is “lactose is present” and
𝑦 is “glucose is present”. Researchers have managed to create transis-
tors, and from them logic gates, based on DNA molecules (see also
Fig. 3.21). One motivation for DNA computing is to achieve increased
parallelism or storage density; another is to create “smart biological
agents” that could perhaps be injected into bodies, replicate them-
selves, and fix or kill cells that were damaged by a disease such as
cancer. Computing in biological systems is not restricted of course to
DNA. Even larger systems such as flocks of birds can be considered as
computational processes.

3.4.4 Cellular automata and the game of life
Cellular automata is a model of a system composed of a sequence of
cells, which of which can have a finite state. At each step, a cell up-
dates its state based on the states of its neighboring cells and some
simple rules. As we will discuss later in this book (see Section 7.4),
cellular automata such as Conway’s “Game of Life” can be used to
simulate computation gates .

3.4.5 Neural networks
One computation device that we all carry with us is our own brain.
Brains have served humanity throughout history, doing computations
that range from distinguishing prey from predators, through making
scientific discoveries and artistic masterpieces, to composing witty 280
character messages. The exact working of the brain is still not fully
understood, but one common mathematical model for it is a (very
large) neural network.

A neural network can be thought of as a Boolean circuit that instead
of AND/OR/NOT uses some other gates as the basic basis. For exam-
ple, one particular basis we can use are threshold gates. For every vector
𝑤 = (𝑤0, … , 𝑤𝑘−1) of integers and integer 𝑡 (some or all of whom

http://www.northdownfarm.co.uk/rory/tim/basiclogic.htm
http://science.sciencemag.org/content/early/2013/03/27/science.1232758.full
(http://www.nature.com/nrg/journal/v13/n7/full/nrg3197.html)
https://en.wikipedia.org/wiki/Lac_operon
http://science.sciencemag.org/content/340/6132/554?iss=6132
http://science.sciencemag.org/content/340/6132/554?iss=6132
https://www.cs.princeton.edu/~chazelle/pubs/cacm12-natalg.pdf

140 introduction to theoretical computer science

Figure 3.22: An AND gate using a “Game of Life”
configuration. Figure taken from Jean-Philippe
Rennard’s paper.

Figure 3.23: Common activation functions used in
Neural Networks, including rectified linear units
(ReLU), sigmoids, and hyperbolic tangent. All of
those can be thought of as continuous approximations
to simple the step function. All of these can be used
to compute the NAND gate (see Exercise 3.11). This
property enables neural networks to (approximately)
compute any function that can be computed by a
Boolean circuit.

Figure 3.24: A physical implementation of a NAND
gate using marbles. Each wire in a Boolean circuit is
modeled by a pair of pipes representing the values
0 and 1 respectively, and hence a gate has four input
pipes (two for each logical input) and two output
pipes. If one of the input pipes representing the value
0 has a marble in it then that marble will flow to the
output pipe representing the value 1. (The dashed
line represent a gadget that will ensure that at most
one marble is allowed to flow onward in the pipe.)
If both the input pipes representing the value 1 have
marbles in them, then the first marble will be stuck
but the second one will flow onwards to the output
pipe representing the value 0.

could be negative), the threshold function corresponding to 𝑤, 𝑡 is the
function 𝑇𝑤,𝑡 ∶ {0, 1}𝑘 → {0, 1} that maps 𝑥 ∈ {0, 1}𝑘 to 1 if and only if
∑𝑘−1

𝑖=0 𝑤𝑖𝑥𝑖 ≥ 𝑡. For example, the threshold function 𝑇𝑤,𝑡 correspond-
ing to 𝑤 = (1, 1, 1, 1, 1) and 𝑡 = 3 is simply the majority function MAJ5
on {0, 1}5. Threshold gates can be thought of as an approximation for
neuron cells that make up the core of human and animal brains. To a
first approximation, a neuron has 𝑘 inputs and a single output and the
neurons “fires” or “turns on” its output when those signals pass some
threshold.

Many machine learning algorithms use artificial neural networks
whose purpose is not to imitate biology but rather to perform some
computational tasks, and hence are not restricted to threshold or
other biologically-inspired gates. Generally, a neural network is often
described as operating on signals that are real numbers, rather than
0/1 values, and where the output of a gate on inputs 𝑥0, … , 𝑥𝑘−1 is
obtained by applying 𝑓(∑𝑖 𝑤𝑖𝑥𝑖) where 𝑓 ∶ ℝ → ℝ is an an activation
function such as rectified linear unit (ReLU), Sigmoid, or many others
(see Fig. 3.23). However, for the purposes of our discussion, all of
the above are equivalent (see also Exercise 3.11). In particular we can
reduce the setting of real inputs to binary inputs by representing a
real number in the binary basis, and multiplying the weight of the bit
corresponding to the 𝑖𝑡ℎ digit by 2𝑖.

3.4.6 A computer made from marbles and pipes
We can implement computation using many other physical media,
without any electronic, biological, or chemical components. Many
suggestions for mechanical computers have been put forward, going
back at least to Gottfried Leibniz’ computing machines from the 1670s
and Charles Babbage’s 1837 plan for a mechanical “Analytical Engine”.
As one example, Fig. 3.24 shows a simple implementation of a NAND
(negation of AND, see Section 3.5) gate using marbles going through
pipes. We represent a logical value in {0, 1} by a pair of pipes, such
that there is a marble flowing through exactly one of the pipes. We
call one of the pipes the “0 pipe” and the other the “1 pipe”, and so
the identity of the pipe containing the marble determines the logical
value. A NAND gate corresponds to a mechanical object with two
pairs of incoming pipes and one pair of outgoing pipes, such that for
every 𝑎, 𝑏 ∈ {0, 1}, if two marble are rolling toward the object in the 𝑎
pipe of the first pair and the 𝑏 pipe of the second pair, then a marble
will roll out of the object in the NAND(𝑎, 𝑏)-pipe of the outgoing pair.
In fact, there is even a commercially-available educational game that
uses marbles as a basis of computing, see Fig. 3.26.

http://www.rennard.org/alife/CollisionBasedRennard.pdf
http://www.rennard.org/alife/CollisionBasedRennard.pdf
https://goo.gl/p9izfA
https://goo.gl/p9izfA
https://en.wikipedia.org/wiki/Analytical_Engine

defining computation 141

Figure 3.25: A “gadget” in a pipe that ensures that at
most one marble can pass through it. The first marble
that passes causes the barrier to lift and block new
ones.

Figure 3.26: The game “Turing Tumble” contains an
implementation of logical gates using marbles.

3.5 THE NAND FUNCTION

The NAND function is another simple function that is extremely use-
ful for defining computation. It is the function mapping {0, 1}2 to
{0, 1} defined by:

NAND(𝑎, 𝑏) =
⎧{
⎨{⎩

0 𝑎 = 𝑏 = 1
1 otherwise

. (3.9)

As its name implies, NAND is the NOT of AND (i.e., NAND(𝑎, 𝑏) =
NOT(AND(𝑎, 𝑏))), and so we can clearly compute NAND using AND
and NOT. Interestingly, the opposite direction holds as well:

Theorem 3.9 — NAND computes AND,OR,NOT. We can compute AND,
OR, and NOT by composing only the NAND function.

Proof. We start with the following observation. For every 𝑎 ∈ {0, 1},
AND(𝑎, 𝑎) = 𝑎. Hence, NAND(𝑎, 𝑎) = NOT(AND(𝑎, 𝑎)) = NOT(𝑎).
This means that NAND can compute NOT. By the principle of “dou-
ble negation”, AND(𝑎, 𝑏) = NOT(NOT(AND(𝑎, 𝑏))), and hence
we can use NAND to compute AND as well. Once we can compute
AND and NOT, we can compute OR using “De Morgan’s Law”:
OR(𝑎, 𝑏) = NOT(AND(NOT(𝑎),NOT(𝑏))) (which can also be writ-
ten as 𝑎 ∨ 𝑏 = 𝑎 ∧ 𝑏) for every 𝑎, 𝑏 ∈ {0, 1}.

�

P
Theorem 3.9’s proof is very simple, but you should
make sure that (i) you understand the statement of
the theorem, and (ii) you follow its proof. In partic-
ular, you should make sure you understand why De
Morgan’s law is true.

We can use NAND to compute many other functions, as demon-
strated in the following exercise.

Solved Exercise 3.5 — Compute majority with NAND. Let MAJ ∶ {0, 1}3 →
{0, 1} be the function that on input 𝑎, 𝑏, 𝑐 outputs 1 iff 𝑎 + 𝑏 + 𝑐 ≥ 2.
Show how to compute MAJ using a composition of NAND’s.

�

Solution:

https://www.turingtumble.com/
https://goo.gl/TH86dH

142 introduction to theoretical computer science

Figure 3.27: A circuit with NAND gates to compute
the Majority function on three bits

Recall that (3.5) states that

MAJ(𝑥0, 𝑥1, 𝑥2) = OR (AND(𝑥0, 𝑥1) , OR(AND(𝑥1, 𝑥2) , AND(𝑥0, 𝑥2))) .
(3.10)

We can use Theorem 3.9 to replace all the occurrences of AND
and OR with NAND’s. Specifically, we can use the equivalence
AND(𝑎, 𝑏) = NOT(NAND(𝑎, 𝑏)), OR(𝑎, 𝑏) = NAND(NOT(𝑎),NOT(𝑏)),
and NOT(𝑎) = NAND(𝑎, 𝑎) to replace the righthand side of
(3.10) with an expression involving only NAND, yielding that
MAJ(𝑎, 𝑏, 𝑐) is equivalent the (somewhat unwieldy) expression

NAND(NAND(NAND(NAND(𝑎, 𝑏),NAND(𝑎, 𝑐)),

NAND(NAND(𝑎, 𝑏),NAND(𝑎, 𝑐))),

NAND(𝑏, 𝑐))

(3.11)

The same formula can also be expressed as a circuit with NAND
gates, see Fig. 3.27.

�

3.5.1 NAND Circuits
We define NAND Circuits as circuits in which all the gates are NAND
operations. Such a circuit again corresponds to a directed acyclic
graph (DAG) since all the gates correspond to the same function (i.e.,
NAND), we do not even need to label them, and all gates have in-
degree exactly two. Despite their simplicity, NAND circuits can be
quite powerful.

� Example 3.10 — 𝑁𝐴𝑁𝐷 circuit for 𝑋𝑂𝑅. Recall the XOR function
which maps 𝑥0, 𝑥1 ∈ {0, 1} to 𝑥0 + 𝑥1 mod 2. We have seen in
Section 3.2.2 that we can compute XOR using AND, OR, and NOT,
and so by Theorem 3.9 we can compute it using only NAND’s.
However, the following is a direct construction of computing XOR
by a sequence of NAND operations:

1. Let 𝑢 = NAND(𝑥0, 𝑥1).
2. Let 𝑣 = NAND(𝑥0, 𝑢)
3. Let 𝑤 = NAND(𝑥1, 𝑢).
4. The XOR of 𝑥0 and 𝑥1 is 𝑦0 = NAND(𝑣, 𝑤).

defining computation 143

Figure 3.28: A circuit with NAND gates to compute
the XOR of two bits.

One can verify that this algorithm does indeed compute XOR
by enumerating all the four choices for 𝑥0, 𝑥1 ∈ {0, 1}. We can also
represent this algorithm graphically as a circuit, see Fig. 3.28.

In fact, we can show the following theorem:

Theorem 3.11 — NAND is a universal operation. For every Boolean circuit
𝐶 of 𝑠 gates, there exists a NAND circuit 𝐶′ of at most 3𝑠 gates that
computes the same function as 𝐶.

Proof Idea:

The idea of the proof is to just replace every AND, OR and NOT
gate with their NAND implementation following the proof of Theo-
rem 3.9.

⋆

Proof of Theorem 3.11. If 𝐶 is a Boolean circuit, then since, as we’ve
seen in the proof of Theorem 3.9, for every 𝑎, 𝑏 ∈ {0, 1}

• NOT(𝑎) = NAND(𝑎, 𝑎)

• AND(𝑎, 𝑏) = NAND(NAND(𝑎, 𝑏),NAND(𝑎, 𝑏))

• OR(𝑎, 𝑏) = NAND(NAND(𝑎, 𝑎),NAND(𝑏, 𝑏))

we can replace every gate of 𝐶 with at most three NAND gates to
obtain an equivalent circuit 𝐶′. The resulting circuit will have at most
3𝑠 gates.

�

 Big Idea 3 Two models are equivalent in power if they can be used
to compute the same set of functions.

3.5.2 More examples of NAND circuits (optional)
Here are some more sophisticated examples of NAND circuits:

Incrementing integers. Consider the task of computing, given as input
a string 𝑥 ∈ {0, 1}𝑛 that represents a natural number 𝑋 ∈ ℕ, the
representation of 𝑋 + 1. That is, we want to compute the function
INC𝑛 ∶ {0, 1}𝑛 → {0, 1}𝑛+1 such that for every 𝑥0, … , 𝑥𝑛−1, INC𝑛(𝑥) =
𝑦 which satisfies ∑𝑛

𝑖=0 𝑦𝑖2𝑖 = (∑𝑛−1
𝑖=0 𝑥𝑖2𝑖) + 1. (For simplicity of

notation, in this example we use the representation where the least
significant digit is first rather than last.)

The increment operation can be very informally described as fol-
lows: “Add 1 to the least significant bit and propagate the carry”. A little

144 introduction to theoretical computer science

Figure 3.29: NAND circuit with computing the incre-
ment function on 4 bits.

more precisely, in the case of the binary representation, to obtain the
increment of 𝑥, we scan 𝑥 from the least significant bit onwards, and
flip all 1’s to 0’s until we encounter a bit equal to 0, in which case we
flip it to 1 and stop.

Thus we can compute the increment of 𝑥0, … , 𝑥𝑛−1 by doing the
following:

Algorithm 3.12 — Compute Increment Function.

Input: 𝑥0, 𝑥1, … , 𝑥𝑛−1 representing the number ∑𝑛−1
𝑖=0 𝑥𝑖 ⋅ 2𝑖

we use LSB-first representation
Output: 𝑦 ∈ {0, 1}𝑛+1 such that ∑𝑛

𝑖=0 𝑦𝑖 ⋅ 2𝑖 = ∑𝑛−1
𝑖=0 𝑥𝑖 ⋅ 2𝑖

1: Let 𝑐0 ← 1 # we pretend we have a ”carry” of 1 initially
2: for 𝑖 = 0, … , 𝑛 − 1 do
3: Let 𝑦𝑖 ← 𝑋𝑂𝑅(𝑥𝑖, 𝑐𝑖).
4: if 𝑐𝑖 = 𝑥𝑖 = 1 then
5: 𝑐𝑖+1 = 1
6: else
7: 𝑐𝑖+1 = 0
8: end if
9: end for

10: Let 𝑦𝑛 ← 𝑐𝑛.

Algorithm 3.12 describes precisely how to compute the increment
operation, and can be easily transformed into Python code that per-
forms the same computation, but it does not seem to directly yield
a NAND circuit to compute this. However, we can transform this
algorithm line by line to a NAND circuit. For example, since for ev-
ery 𝑎, NAND(𝑎,NOT(𝑎)) = 1, we can replace the initial statement
𝑐0 = 1 with 𝑐0 = NAND(𝑥0,NAND(𝑥0, 𝑥0)). We already know
how to compute XOR using NAND and so we can use this to im-
plement the operation 𝑦𝑖 ← XOR(𝑥𝑖, 𝑐𝑖). Similarly, we can write
the “if” statement as saying 𝑐𝑖+1 ← AND(𝑦𝑖, 𝑥𝑖), or in other words
𝑐𝑖+1 ← NAND(NAND(𝑦𝑖, 𝑥𝑖),NAND(𝑦𝑖, 𝑥𝑖)). Finally, the assignment
𝑦𝑛 = 𝑐𝑛 can be written as 𝑦𝑛 = NAND(NAND(𝑐𝑛, 𝑐𝑛),NAND(𝑐𝑛, 𝑐𝑛)).
Combining these observations yields for every 𝑛 ∈ ℕ, a NAND circuit
to compute INC𝑛. For example, Fig. 3.29 shows how this circuit looks
like for 𝑛 = 4.

From increment to addition. Once we have the increment operation,
we can certainly compute addition by repeatedly incrementing (i.e.,
compute 𝑥+𝑦 by performing INC(𝑥) 𝑦 times). However, that would be
quite inefficient and unnecessary. With the same idea of keeping track
of carries we can implement the “grade-school” addition algorithm
and compute the function ADD𝑛 ∶ {0, 1}2𝑛 → {0, 1}𝑛+1 that on

defining computation 145

input 𝑥 ∈ {0, 1}2𝑛 outputs the binary representation of the sum of the
numbers represented by 𝑥0, … , 𝑥𝑛−1 and 𝑥𝑛+1, … , 𝑥𝑛:

Algorithm 3.13 — Addition using NAND.

Input: 𝑢 ∈ {0, 1}𝑛, 𝑣 ∈ {0, 1}𝑛 representing numbers in
LSB-first binary representation.

Output: LSB-first binary representation of 𝑥 + 𝑦.
1: Let 𝑐0 ← 0
2: for 𝑖 = 0, … , 𝑛 − 1 do
3: Let 𝑦𝑖 ← 𝑢𝑖 + 𝑣𝑖 mod 2
4: if 𝑢𝑖 + 𝑣𝑖 + 𝑐𝑖 ≥ 2 then
5: 𝑐𝑖+1 ← 1
6: else
7: 𝑐𝑖+1 ← 0
8: end if
9: end for

10: Let 𝑦𝑛 ← 𝑐𝑛

Once again, Algorithm 3.13 can be translated into a NAND circuit.
The crucial observation is that the “if/then” statement simply cor-
responds to 𝑐𝑖+1 ← MAJ3(𝑢𝑖, 𝑣𝑖, 𝑣𝑖) and we have seen in in Solved
Exercise 3.5 that the function MAJ3 ∶ {0, 1}3 → {0, 1} can be computed
using NANDs.

3.5.3 The NAND-CIRC Programming language
Just like we did for Boolean circuits, we can define a programming-
language analog of NAND circuits. It is even simpler than the AON-
CIRC language since we only have a single operation. We define the
NAND-CIRC Programming Language to be a programming language
where every line has the following form:

foo = NAND(bar,blah)

where foo, bar and blah are variable identifiers.

� Example 3.14 — Our first NAND-CIRC program. Here is an example of a
NAND-CIRC program:

u = NAND(X[0],X[1])

v = NAND(X[0],u)

w = NAND(X[1],u)

Y[0] = NAND(v,w)

146 introduction to theoretical computer science

Figure 3.30: A NAND program and the corresponding
circuit. Note how every line in the program corre-
sponds to a gate in the circuit.

P
Do you know what function this program computes?
Hint: you have seen it before.

We can formally define the notion of computation by a NAND-
CIRC program in the natural way:

Definition 3.15 — Computing by a NAND-CIRC program. Let 𝑓 ∶ {0, 1}𝑛 →
{0, 1}𝑚 be some function, and let 𝑃 be a NAND-CIRC program.
We say that 𝑃 computes the function 𝐹 if:

1. 𝑃 has 𝑛 input variables X[0], … ,X[𝑛−1] and 𝑚 output variables
Y[0],…,Y[𝑚 − 1].

2. For every 𝑥 ∈ {0, 1}𝑛, if we execute 𝑃 when we assign to
X[0], … ,X[𝑛 − 1] the values 𝑥0, … , 𝑥𝑛−1, then at the end of
the execution, the output variables Y[0],…,Y[𝑚 − 1] have the
values 𝑦0, … , 𝑦𝑚−1 where 𝑦 = 𝑓(𝑥).

As before we can show that NAND circuits are equivalent to
NAND-CIRC programs (see Fig. 3.30):

Theorem 3.16 — NAND circuits and straight-line program equivalence. For
every 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 and 𝑠 ≥ 𝑚, 𝑓 is computable by a
NAND-CIRC program of 𝑠 lines if and only if 𝑓 is computable by a
NAND circuit of 𝑠 gates.

We omit the proof of Theorem 3.16 since it follows along exactly
the same lines as the equivalence of Boolean circuits and AON-CIRC
program (Theorem 3.8). Given Theorem 3.16 and Theorem 3.11, we
know that we can translate every 𝑠-line AON-CIRC program 𝑃 into
an equivalent NAND-CIRC program of at most 3𝑠 lines. In fact, this
translation can be easily done by replacing every line of the form
foo = AND(bar,blah), foo = OR(bar,blah) or foo = NOT(bar)

with the equivalent 1-3 lines that use the NAND operation. Our GitHub
repository contains a “proof by code”: a simple Python program
AON2NAND that transforms an AON-CIRC into an equivalent NAND-
CIRC program.

R
Remark 3.17 — Is the NAND-CIRC programming language
Turing Complete? (optional note). You might have heard
of a term called “Turing Complete” that is sometimes
used to describe programming languages. (If you
haven’t, feel free to ignore the rest of this remark: we

https://github.com/boazbk/tcscode
https://github.com/boazbk/tcscode

defining computation 147

define this term precisely in Chapter 7.) If so, you
might wonder if the NAND-CIRC programming lan-
guage has this property. The answer is no, or perhaps
more accurately, the term “Turing Completeness” is
not really applicable for the NAND-CIRC program-
ming language. The reason is that, by design, the
NAND-CIRC programming language can only com-
pute finite functions 𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 that take a
fixed number of input bits and produce a fixed num-
ber of outputs bits. The term “Turing Complete” is
only applicable to programming languages for infinite
functions that can take inputs of arbitrary length. We
will come back to this distinction later on in this book.

3.6 EQUIVALENCE OF ALL THESE MODELS

If we put together Theorem 3.8, Theorem 3.11, and Theorem 3.16, we
obtain the following result:

Theorem 3.18 — Equivalence between models of finite computation. For
every sufficiently large 𝑠, 𝑛, 𝑚 and 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚, the
following conditions are all equivalent to one another:

• 𝑓 can be computed by a Boolean circuit (with ∧, ∨, ¬ gates) of at
most 𝑂(𝑠) gates.

• 𝑓 can be computed by an AON-CIRC straight-line program of at
most 𝑂(𝑠) lines.

• 𝑓 can be computed by a NAND circuit of at most 𝑂(𝑠) gates.

• 𝑓 can be computed by a NAND-CIRC straight-line program of at
most 𝑂(𝑠) lines.

By “𝑂(𝑠)” we mean that the bound is at most 𝑐 ⋅ 𝑠 where 𝑐 is a con-
stant that is independent of 𝑛. For example, if 𝑓 can be computed by a
Boolean circuit of 𝑠 gates, then it can be computed by a NAND-CIRC
program of at most 3𝑠 lines, and if 𝑓 can be computed by a NAND
circuit of 𝑠 gates, then it can be computed by an AON-CIRC program
of at most 2𝑠 lines.

Proof Idea:

We omit the formal proof, which is obtained by combining Theo-
rem 3.8, Theorem 3.11, and Theorem 3.16. The key observation is that
the results we have seen allow us to translate a program/circuit that
computes 𝑓 in one of the above models into a program/circuit that
computes 𝑓 in another model by increasing the lines/gates by at most
a constant factor (in fact this constant factor is at most 3).

⋆

148 introduction to theoretical computer science

Theorem 3.8 is a special case of a more general result. We can con-
sider even more general models of computation, where instead of
AND/OR/NOT or NAND, we use other operations (see Section 3.6.1
below). It turns out that Boolean circuits are equivalent in power to
such models as well. The fact that all these different ways to define
computation lead to equivalent models shows that we are “on the
right track”. It justifies the seemingly arbitrary choices that we’ve
made of using AND/OR/NOT or NAND as our basic operations,
since these choices do not affect the power of our computational
model. Equivalence results such as Theorem 3.18 mean that we can
easily translate between Boolean circuits, NAND circuits, NAND-
CIRC programs and the like. We will use this ability later on in this
book, often shifting to the most convenient formulation without mak-
ing a big deal about it. Hence we will not worry too much about the
distinction between, for example, Boolean circuits and NAND-CIRC
programs.

In contrast, we will continue to take special care to distinguish
between circuits/programs and functions (recall Big Idea 2). A func-
tion corresponds to a specification of a computational task, and it is
a fundamentally different object than a program or a circuit, which
corresponds to the implementation of the task.

3.6.1 Circuits with other gate sets
There is nothing special about AND/OR/NOT or NAND. For every
set of functions 𝒢 = {𝐺0, … , 𝐺𝑘−1}, we can define a notion of circuits
that use elements of 𝒢 as gates, and a notion of a “𝒢 programming
language” where every line involves assigning to a variable foo the re-
sult of applying some 𝐺𝑖 ∈ 𝒢 to previously defined or input variables.
Specifically, we can make the following definition:

Definition 3.19 — General straight-line programs. Let ℱ = {𝑓0, … , 𝑓𝑡−1}
be a finite collection of Boolean functions, such that 𝑓𝑖 ∶ {0, 1}𝑘𝑖 →
{0, 1} for some 𝑘𝑖 ∈ ℕ. An ℱ program is a sequence of lines, each of
which assigns to some variable the result of applying some 𝑓𝑖 ∈ ℱ
to 𝑘𝑖 other variables. As above, we use X[𝑖] and Y[𝑗] to denote the
input and output variables.

We say that ℱ is a universal set of operations (also known as a uni-
versal gate set) if there exists a ℱ program to compute the function
NAND.

AON-CIRC programs correspond to {𝐴𝑁𝐷,OR,NOT} programs,
NAND-CIRC programs corresponds to ℱ programs for the set
ℱ that only contains the NAND function, but we can also define
{IF,ZERO,ONE} programs (see below), or use any other set.

defining computation 149

2 One can also define these functions as taking a
length zero input. This makes no difference for the
computational power of the model.

We can also define ℱ circuits, which will be directed graphs in
which each gate corresponds to applying a function 𝑓𝑖 ∈ ℱ, and will
each have 𝑘𝑖 incoming wires and a single outgoing wire. (If the func-
tion 𝑓𝑖 is not symmetric, in the sense that the order of its input matters
then we need to label each wire entering a gate as to which parameter
of the function it corresponds to.) As in Theorem 3.8, we can show
that ℱ circuits and ℱ programs are equivalent. We have seen that for
ℱ = {AND,OR,NOT}, the resulting circuits/programs are equivalent
in power to the NAND-CIRC programming language, as we can com-
pute NAND using AND/OR/NOT and vice versa. This turns out to be
a special case of a general phenomena— the universality of NAND and
other gate sets — that we will explore more in depth later in this book.

� Example 3.20 — IF,ZERO,ONE circuits. Let ℱ = {IF,ZERO,ONE}
where ZERO ∶ {0, 1} → {0} and ONE ∶ {0, 1} → {1} are the
constant zero and one functions, 2 and IF ∶ {0, 1}3 → {0, 1} is the
function that on input (𝑎, 𝑏, 𝑐) outputs 𝑏 if 𝑎 = 1 and 𝑐 otherwise.
Then ℱ is universal.

Indeed, we can demonstrate that {IF,ZERO,ONE} is universal
using the following formula for NAND:

NAND(𝑎, 𝑏) = IF(𝑎, IF(𝑏,ZERO,ONE),ONE) . (3.12)

There are also some sets ℱ that are more restricted in power. For
example it can be shown that if we use only AND or OR gates (with-
out NOT) then we do not get an equivalent model of computation.
The exercises cover several examples of universal and non-universal
gate sets.

3.6.2 Specification vs. implementation (again)
As we discussed in Section 2.5.1, one of the most important distinc-
tions in this book is that of specification versus implementation or sep-
arating “what” from “how” (see Fig. 3.31). A function corresponds
to the specification of a computational task, that is what output should
be produced for every particular input. A program (or circuit, or any
other way to specify algorithms) corresponds to the implementation of
how to compute the desired output from the input. That is, a program
is a set of instructions how to compute the output from the input.
Even within the same computational model there can be many differ-
ent ways to compute the same function. For example, there is more
than one NAND-CIRC program that computes the majority function,
more than one Boolean circuit to compute the addition function, and
so on and so forth.

150 introduction to theoretical computer science

Figure 3.31: It is crucial to distinguish between the
specification of a computational task, namely what is
the function that is to be computed and the implemen-
tation of it, namely the algorithm, program, or circuit
that contains the instructions how to map and input to
an output. The same function could be computed in
many different ways.

Confusing specification and implementation (or equivalently func-
tions and programs) is a common mistake, and one that is unfortu-
nately encouraged by the common programming-language termi-
nology of referring to parts of programs as “functions”. However, in
both the theory and practice of computer science, it is important to
maintain this distinction, and it is particularly important for us in this
book.

✓ Lecture Recap

• An algorithm is a recipe for performing a compu-
tation as a sequence of “elementary” or “simple”
operations.

• One candidate definition for “elementary” opera-
tions is the set AND, OR and NOT.

• Another candidate definition for an “elementary”
operation is the NAND operation. It is an operation
that is easily implementable in the physical world
in a variety of methods including by electronic
transistors.

• We can use NAND to compute many other func-
tions, including majority, increment, and others.

• There are other equivalent choices, including the
sets {𝐴𝑁𝐷,OR,NOT} and {IF,ZERO,ONE}.

• We can formally define the notion of a function
𝐹 ∶ {0, 1}𝑛 → {0, 1}𝑚 being computable using the
NAND-CIRC Programming language.

• For every set of basic operations, the notions of be-
ing computable by a circuit and being computable
by a straight-line program are equivalent.

defining computation 151

3.7 EXERCISES

Exercise 3.1 — Compare 4 bit numbers. Give a Boolean circuit
(with AND/OR/NOT gates) that computes the function
CMP8 ∶ {0, 1}8 → {0, 1} such that CMP8(𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏0, 𝑏1, 𝑏2, 𝑏3) = 1
if and only if the number represented by 𝑎0𝑎1𝑎2𝑎3 is larger than the
number represented by 𝑏0𝑏1𝑏2𝑏3.

�

Exercise 3.2 — Compare 𝑛 bit numbers. Prove that there exists a constant 𝑐
such that for every 𝑛 there is a Boolean circuit (with AND/OR/NOT
gates) 𝐶 of at most 𝑐 ⋅ 𝑛 gates that computes the function CMP2𝑛 ∶
{0, 1}2𝑛 → {0, 1} such that CMP2𝑛(𝑎0 ⋯ 𝑎𝑛−1𝑏0 ⋯ 𝑏𝑛−1) = 1 if and
only if the number represented by 𝑎0 ⋯ 𝑎𝑛−1 is larger than the number
represented by 𝑏0 ⋯ 𝑏𝑛−1.

�

Exercise 3.3 — OR,NOT is universal. Prove that the set {OR,NOT} is univer-
sal, in the sense that one can compute NAND using these gates.

�

Exercise 3.4 — AND,OR is not universal. Prove that for every 𝑛-bit input
circuit 𝐶 that contains only AND, and OR gates, as well as gates that
compute the constant functions 0 and 1, 𝐶 is monotone, in the sense
that if 𝑥, 𝑥′ ∈ {0, 1}𝑛, 𝑥𝑖 ≤ 𝑥′

𝑖 for every 𝑖 ∈ [𝑛], then 𝐶(𝑥) ≤ 𝐶(𝑥′).
Conclude that the set {AND,OR, 0, 1} is not universal.

�

Exercise 3.5 — XOR is not universal. Prove that for every 𝑛-bit input circuit
𝐶 that contains only XOR, gates, as well as gates that compute the
constant functions 0 and 1, 𝐶 is affine or linear modulo two, in the sense
that there exists some 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1} such that for every
𝑥 ∈ {0, 1}𝑛, 𝐶(𝑥) = ∑𝑛−1

𝑖=0 𝑎𝑖𝑥𝑖 + 𝑏 mod 2.
Conclude that the set {XOR, 0, 1} is not universal.

�

Exercise 3.6 — MAJ,NOT is universal. Prove that {MAJ,NOT} is a universal
set of gates.

�

Exercise 3.7 — NOR is universal. Let NOR ∶ {0, 1}2 → {0, 1} defined as
NOR(𝑎, 𝑏) = NOT(OR(𝑎, 𝑏)). Prove that {NOR} is a universal set of
gates.

�

Exercise 3.8 — Lookup is universal. Prove that {LOOKUP1, 0, 1} is a univer-
sal set of gates where 0 and 1 are the constant functions LOOKUP1 ∶
{0, 1}3 → {0, 1} satisfies LOOKUP1(𝑎, 𝑏, 𝑐) equals 𝑎 if 𝑐 = 0 and equals
𝑏 if 𝑐 = 1.

152 introduction to theoretical computer science

3 Thanks to Alec Sun for solving this problem.

�

Exercise 3.9 — Bound on universal basis size (challenge). Prove that for ev-
ery subset 𝐵 of the functions from {0, 1}𝑘 to {0, 1}, if 𝐵 is universal
then there is a 𝐵-circuit of at most 𝑂(𝑘) gates to compute the NAND
function (you can start by showing that there is a 𝐵 circuit of at most
𝑂(𝑘16) gates).3

�

Exercise 3.10 — Threshold using NANDs. Prove that there is some constant
𝑐 such that for every 𝑛 > 1, and integers 𝑎0, … , 𝑎𝑛−1, 𝑏 ∈ {−2𝑛, −2𝑛 +
1, … , −1, 0, +1, … , 2𝑛}, there is a NAND circuit with at most 𝑐�̇�4 gates
that computes the threshold function 𝑓𝑎0,…,𝑎𝑛−1,𝑏 ∶ {0, 1}𝑛 → {0, 1} that
on input 𝑥 ∈ {0, 1}𝑛 outputs 1 if and only if ∑𝑛−1

𝑖=0 𝑎𝑖𝑥𝑖 > 𝑏.
�

Exercise 3.11 — NANDs from activation functions. We say that a function
𝑓 ∶ ℝ2 → ℝ is a NAND approximator if it has the following property: for
every 𝑎, 𝑏 ∈ ℝ, if min{|𝑎|, |1 − 𝑎|} ≤ 1/3 and min{|𝑏|, |1 − 𝑏|} ≤ 1/3
then |𝑓(𝑎, 𝑏) − NAND(⌊𝑎⌉, 𝑙𝑓𝑙𝑜𝑜𝑟𝑏⌉)| ≤ 1/3 where we denote by ⌊𝑥⌋
the integer closest to 𝑥. That is, if 𝑎, 𝑏 are within a distance 1/3 to {0, 1}
then we want 𝑓(𝑎, 𝑏) to equal the NAND of the values in {0, 1} that
are closest to 𝑎 and 𝑏 respectively. Otherwise, we do not care what the
output of 𝑓 is on 𝑎 and 𝑏.

In this exercise you will show that you can construct a NAND ap-
proximator from many common activation functions used in deep
neural networks. As a corollary you will obtain that deep neural net-
works can simulate NAND circuits. Since NAND circuits can also
simulate deep neural networks, these two computational models are
equivalent to one another.

1. Show that there is a NAND approximator 𝑓 defined as 𝑓(𝑎, 𝑏) =
𝐿(𝑅𝑒𝐿𝑈(𝐿′(𝑎, 𝑏))) where 𝐿′ ∶ ℝ2 → ℝ is an affine function (of
the form 𝐿′(𝑎, 𝑏) = 𝛼𝑎 + 𝛽𝑏 + 𝛾 for some 𝛼, 𝛽, 𝛾 ∈ ℝ), 𝐿 is an
affine function (of the form 𝐿(𝑦) = 𝛼𝑦 + 𝛽 for 𝛼, 𝛽 ∈ ℝ), and
𝑅𝑒𝐿𝑈 ∶ ℝ → ℝ, is the function defined as 𝑅𝑒𝐿𝑈(𝑥) = max{0, 𝑥}.

2. Show that there is a NAND approximator 𝑓 defined as 𝑓(𝑎, 𝑏) =
𝐿(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐿′(𝑎, 𝑏))) where 𝐿′, 𝐿 are affine as above and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ∶
ℝ → ℝ is the function defined as 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑒𝑥/(𝑒𝑥 + 1).

3. Show that there is a NAND approximator 𝑓 defined as 𝑓(𝑎, 𝑏) =
𝐿(𝑡𝑎𝑛ℎ(𝐿′(𝑎, 𝑏))) where 𝐿′, 𝐿 are affine as above and 𝑡𝑎𝑛ℎ ∶ ℝ → ℝ
is the function defined as 𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥).

4. Prove that for every NAND-circuit 𝐶 with 𝑛 inputs and one output
that computes a function 𝑔 ∶ {0, 1}𝑛 → {0, 1}, if we replace every

defining computation 153

4 Hint: One approach to solve this is using recur-
sion and analyzing it using the so called “Master
Theorem”.

5 Hint: Vertices in layers beyond the output can be
safely removed without changing the functionality of
the circuit.

gate of 𝐶 with a NAND-approximator and then invoke the result-
ing circuit on some 𝑥 ∈ {0, 1}𝑛, the output will be a number 𝑦 such
that |𝑦 − 𝑔(𝑥)| ≤ 1/3.

�

Exercise 3.12 — Majority with NANDs efficiently. Prove that there is some
constant 𝑐 such that for every 𝑛 > 1, there is a NAND circuit of at most
𝑐 ⋅ 𝑛 gates that computes the function MAJ𝑛 ∶ {0, 1}𝑛 → {0, 1} is the
majority function on 𝑛 input bits. That is MAJ𝑛(𝑥) = 1 iff ∑𝑛−1

𝑖=0 𝑥𝑖 >
𝑛/2.4

�

Exercise 3.13 — Output at last layer. Prove that for every 𝑓 ∶ {0, 1}𝑛 →
{0, 1}, if there is a Boolean circuit 𝐶 of 𝑠 gates that computes 𝑓 then
there is a Boolean circuit 𝐶′ of at most 𝑠 gates such that in the minimal
layering of 𝐶′, the output gate of 𝐶′ is in placed the last layer. See
footnote for hint.5

�

3.8 BIOGRAPHICAL NOTES

The excerpt from Al-Khwarizmi’s book is from “The Algebra of Ben-
Musa”, Fredric Rosen, 1831.

Charles Babbage (1791-1871) was a visionary scientist, mathemati-
cian, and inventor (see [Swa02; CM00]). More than a century before
the invention of modern electronic computers, Babbage realized that
computation can be in principle mechanized. His first design for a
mechanical computer was the difference engine that was designed to do
polynomial interpolation. He then designed the analytical engine which
was a much more general machine and the first prototype for a pro-
grammable general purpose computer. Unfortunately, Babbage was
never able to complete the design of his prototypes. One of the earliest
people to realize the engine’s potential and far reaching implications
was Ada Lovelace (see the notes for Chapter 6).

Boolean algebra was first investigated by Boole and DeMorgan
in the 1840’s [Boo47; De 47]. The definition of Boolean circuits and
connection to electrical relay circuits was given in Shannon’s Masters
Thesis [Sha38]. (Howard Gardener called Shannon’s thesis “possibly
the most important, and also the most famous, master’s thesis of the
[20th] century”.) Savage’s book [Sav98], like this one, introduces
the theory of computation starting with Boolean circuits as the first
model. Jukna’s book [Juk12] contains a modern in-depth exposition of
Boolean circuits, see also [Weg87].

The NAND function was shown to be universal by Sheffer [She13],
though this also appears in the earlier work of Peirce, see [Bur78].
Whitehead and Russell used NAND as the basis for their logic in

154 introduction to theoretical computer science

their magnum opus Principia Mathematica [WR12]. In her Ph.D thesis,
Ernst [Ern09] investigates empirically the minimal NAND circuits
for various functions. Nissan and Shocken’s book [NS05] builds a
computing system starting from NAND gates and ending with high
level programs and games (“NAND to Tetris”); see also the website
nandtotetris.org.

https://www.nand2tetris.org/

	I Finite computation
	Defining computation
	Defining computation
	Computing using AND, OR, and NOT.
	Some properties of AND and OR
	Extended example: Computing XOR from AND, OR, and NOT
	Informally defining ``basic operations'' and ``algorithms''

	Boolean Circuits
	Boolean circuits: a formal definition
	Equivalence of circuits and straight-line programs

	Physical implementations of computing devices (digression)
	Transistors
	Logical gates from transistors
	Biological computing
	Cellular automata and the game of life
	Neural networks
	A computer made from marbles and pipes

	The NAND function
	NAND Circuits
	More examples of NAND circuits (optional)
	The NAND-CIRC Programming language

	Equivalence of all these models
	Circuits with other gate sets
	Specification vs. implementation (again)

	Exercises
	Biographical notes

