
14
NP, NP completeness, and the Cook-Levin Theorem

“In this paper we give theorems that suggest, but do not
imply, that these problems, as well as many others, will
remain intractable perpetually”, Richard Karp, 1972

“Sad to say, but it will be many more years, if ever before
we really understand the Mystical Power of Twoness…
2-SAT is easy, 3-SAT is hard, 2-dimensional matching is
easy, 3-dimensional matching is hard. Why? oh, Why?”
Eugene Lawler

So far we have shown that 3SAT is no harder than Quadratic Equa-
tions, Independent Set, Maximum Cut, and Longest Path. But to show
that these problems are computationally equivalent we need to give re-
ductions in the other direction, reducing each one of these problems to
3SAT as well. It turns out we can reduce all three problems to 3SAT in
one fell swoop.

In fact, this result extends far beyond these particular problems. All
of the problems we discussed in Chapter 13, and a great many other
problems, share the same commonality: they are all search problems,
where the goal is to decide, given an instance 𝑥, whether there exists
a solution 𝑦 that satisfies some condition that can be verified in poly-
nomial time. For example, in 3SAT, the instance is a formula and the
solution is an assignment to the variable; in Max-Cut the instance is a
graph and the solution is a cut in the graph; and so on and so forth. It
turns out that every such search problem can be reduced to 3SAT.

14.1 THE CLASS NP
To make the above precise, we will make the following mathematical
definition. we define the class NP to contain all Boolean functions that
correspond to a search problem of the form above. That is, a Boolean
function 𝐹 is in NP if 𝐹 has the form that on input a string 𝑥, 𝐹(𝑥) = 1
if and only if there exists a “solution” string 𝑤 such that the pair (𝑥, 𝑤)

Compiled on 11.14.2019 09:33

Learning Objectives:
• Introduce the class NP capturing a great many

important computational problems
• NP-completeness: evidence that a problem

might be intractable.
• The P vs NP problem.

452 introduction to theoretical computer science

Figure 14.1: Overview of the results of this chapter.
We define NP to contain all decision problems for
which a solution can be efficiently verified. The main
result of this chapter is the Cook Levin Theorem (The-
orem 14.6) which states that 3SAT has a polynomial-
time algorithm if and only if every problem in NP
has a polynomial-time algorithm. Another way to
state this theorem is that 3SAT is NP complete. We
will prove the Cook-Levin theorem by defining the
two intermediate problems NANDSAT and 3NAND,
proving that NANDSAT is NP complete, and then
proving that NANDSAT ≤𝑝 3NAND ≤𝑝 3SAT.

satisfies some polynomial-time checkable condition. Formally, NP is
defined as follows:

np, np completeness, and the cook-levin theorem 453

Figure 14.2: The class NP corresponds to problems
where solutions can be efficiently verified. That is, this
is the class of functions 𝐹 such that 𝐹(𝑥) = 1 if there
is a “solution” 𝑤 of length polynomial in |𝑥| that can
be verified by a polynomial-time algorithm 𝑉 .

Definition 14.1 — NP. We say that 𝐹 ∶ {0, 1}∗ → {0, 1} is in NP if there
exists some integer 𝑎 > 0 and 𝑉 ∶ {0, 1}∗ → {0, 1} such that 𝑉 ∈ P
and for every 𝑥 ∈ {0, 1}𝑛,

𝐹(𝑥) = 1 ⇔ ∃𝑤∈{0,1}𝑛𝑎 s.t. 𝑉 (𝑥𝑤) = 1 . (14.1)

In other words, for 𝐹 to be in NP, there needs to exist some
polynomial-time computable verification function 𝑉 , such that if
𝐹(𝑥) = 1 then there must exist 𝑤 (of length polynomial in |𝑥|) such
that 𝑉 (𝑥𝑤) = 1, and if 𝐹(𝑥) = 0 then for every such 𝑤, 𝑉 (𝑥𝑤) = 0.
Since the existence of this string 𝑤 certifies that 𝐹(𝑥) = 1, 𝑤 is often
referred to as a certificate, witness, or proof that 𝐹(𝑥) = 1.

See also Fig. 14.2 for an illustration of Definition 14.1. The name
NP stands for “nondeterministic polynomial time” and is used for
historical reasons; see the bibiographical notes. The string 𝑤 in (14.1)
is sometimes known as a solution, certificate, or witness for the instance
𝑥.
Solved Exercise 14.1 — Alternative definition of NP. Show that the condition
that |𝑤| = |𝑥|𝑎 in Definition 14.1 can be replaced by the condition
that |𝑤| ≤ 𝑝(|𝑥|) for some polynomial 𝑝. That is, prove that for every
𝐹 ∶ {0, 1}∗ → {0, 1}, 𝐹 ∈ NP if and only if there is a polynomial-
time Turing machine 𝑉 and a polynomial 𝑝 ∶ ℕ → ℕ such that for
every 𝑥 ∈ {0, 1}∗ 𝐹(𝑥) = 1 if and only if there exists 𝑤 ∈ {0, 1}∗ with
|𝑤| ≤ 𝑝(|𝑥|) such that 𝑉 (𝑥, 𝑤) = 1.

�

Solution:

The “only if” direction (namely that if 𝐹 ∈ NP then there is an
algorithm 𝑉 and a polynomial 𝑝 as above) follows immediately
from Definition 14.1 by letting 𝑝(𝑛) = 𝑛𝑎. For the “if” direc-
tion, the idea is that if a string 𝑤 is of size at most 𝑝(𝑛) for degree
𝑑 polynomial 𝑝, then there is some 𝑛0 such that for all 𝑛 > 𝑛0,
|𝑤| < 𝑛𝑑+1. Hence we can encode 𝑤 by a string of exactly length
𝑛𝑑+1 by padding it with 1 and an appropriate number of zeroes.
Hence if there is an algorithm 𝑉 and polynomial 𝑝 as above, then
we can define an algorithm 𝑉 ′ that does the following on input
𝑥, 𝑤′ with |𝑥| = 𝑛 and |𝑤′| = 𝑛𝑎:

• If 𝑛 ≤ 𝑛0 then 𝑉 ′(𝑥, 𝑤′) ignores 𝑤′ and enumerates over all 𝑤
of length at most 𝑝(𝑛) and outputs 1 if there exists 𝑤 such that
𝑉 (𝑥, 𝑤) = 1. (Since 𝑛 < 𝑛0, this only takes a constant number of
steps.)

454 introduction to theoretical computer science

• If 𝑛 > 𝑛0 then 𝑉 ′(𝑥, 𝑤′) “strips out” the padding by dropping
all the rightmost zeroes from 𝑤 until it reaches out the first 1
(which it drops as well) and obtains a string 𝑤. If |𝑤| ≤ 𝑝(𝑛)
tnen 𝑉 ′ outputs 𝑉 (𝑥, 𝑤).

Since 𝑉 runs in polynomial time, 𝑉 ′ runs in polynomial time
as well, and by definition for every 𝑥, there exists 𝑤′ ∈ {0, 1}|𝑥|𝑎

such that 𝑉 ′(𝑥𝑤′) = 1 if and only if there exists 𝑤 ∈ {0, 1}∗ with
|𝑤| ≤ 𝑝(|𝑥|) such that 𝑉 (𝑥𝑤) = 1.

�

The definition of NP means that for every 𝐹 ∈ NP and string
𝑥 ∈ {0, 1}∗, 𝐹(𝑥) = 1 if and only if there is a short and efficiently
verifiable proof of this fact. That is, we can think of the function 𝑉 in
Definition 14.1 as a verifier algorithm, similar to what we’ve seen in
Section 10.1. The verifier checks whether a given string 𝑤 ∈ {0, 1}∗ is a
valid proof for the statement “𝐹(𝑥) = 1”. Essentially all proof systems
considered in mathematics involve line-by-line checks that can be car-
ried out in polynomial time. Thus the heart of NP is asking for state-
ments that have short (i.e., polynomial in the size of the statements)
proof. Indeed, as we will see in Chapter 15, Kurt Gödel phrased the
question of whether NP = P as asking whether “the mental work of
a mathematician [in proving theorems] could be completely replaced
by a machine”.

R
Remark 14.2 — NP not (necessaily) closed under com-
plement. Definition 14.1 is asymmetric in the sense that
there is a difference between an output of 1 and an
output of 0. You should make sure you understand
why this definition does not guarantee that if 𝐹 ∈ NP
then the function 1 − 𝐹 (i.e., the map 𝑥 ↦ 1 − 𝐹(𝑥)) is
in NP as well.
In fact, it is believed that there do exist functions 𝐹
such that 𝐹 ∈ NP but 1 − 𝐹 ∉ NP. For example, as
shown below, 3SAT ∈ NP, but the function 3SAT that
on input a 3CNF formula 𝜑 outputs 1 if and only if 𝜑
is not satisfiable is not known (nor believed) to be in
NP. This is in contrast to the class P which does satisfy
that if 𝐹 ∈ P then 1 − 𝐹 is in P as well.

14.1.1 Examples of functions in NP
We now present some examples of functions that are in the class NP.
We start with the canonical example of the 3SAT function.

np, np completeness, and the cook-levin theorem 455

� Example 14.3 — 3𝑆𝐴𝑇 ∈ NP. 3SAT is in NP since for every ℓ-
variable formula 𝜑, 3SAT(𝜑) = 1 if and only if there exists a
satisfying assignment 𝑥 ∈ {0, 1}ℓ such that 𝜑(𝑥) = 1, and we
can check this condition in polynomial time.

The above reasoning explains why 3SAT is in NP, but since this
is our first example, we will now belabor the point and expand out
in full formality the precise representation of the witness 𝑤 and the
algorithm 𝑉 that demonstrate that 3SAT is in NP. Since demon-
strating that functions are in NP is fairly straightforward, in future
cases we will not use as much detail, and the reader can also feel
free to skip the rest of this example.

Using Solved Exercise 14.1, it is OK if witness is of size at most
polynomial in the input length 𝑛, rather than of precisely size 𝑛𝑎

for some integer 𝑎 > 0. Specifically, we can represent a 3CNF
formula 𝜑 with 𝑘 variables and 𝑚 clauses as a string of length
𝑛 = 𝑂(𝑚 log 𝑘), since every one of the 𝑚 clauses involves three
variables and their negation, and the identity of each variable can
be represented using ⌈log2 𝑘⌉. We assume that every variable par-
ticipates in some clause (as otherwise it can be ignored) and hence
that 𝑚 ≥ 𝑘, which in particular means that the input length 𝑛 is at
least as large as 𝑚 and 𝑘.

We can represent an assignment to the 𝑘 variables using a 𝑘-
length string 𝑤. The following algorithm checks whether a given 𝑤
satisfies the formula 𝜑:

Algorithm 14.4 — Verifier for 3𝑆𝐴𝑇 .

Input: 3CNF formula 𝜑 on 𝑘 variables and with 𝑚
clauses, string 𝑤 ∈ {0, 1}𝑘

Output: 1 iff 𝑤 satisfies 𝜑
1: for 𝑗 ∈ [𝑚] do
2: Let ℓ1 ∨ ℓ2 ∨ ℓ𝑗 be the 𝑗-th clause of 𝜑
3: if 𝑤 violates all three literals then
4: return 0
5: end if
6: end for
7: return 1

Algorithm 14.4 takes 𝑂(𝑚) time to enumerate over all clauses,
and will return 1 if and only if 𝑦 satisfies all the clauses.

Here are some more examples for problems in NP. For each one
of these problems we merely sketch how the witness is represented
and why it is efficiently checkable, but working out the details can be a
good way to get more comfortable with Definition 14.1:

456 introduction to theoretical computer science

• QUADEQ is in NP since for every ℓ-variable instance of quadratic
equations 𝐸, QUADEQ(𝐸) = 1 if and only if there exists an assign-
ment 𝑥 ∈ {0, 1}ℓ that satisfies 𝐸. We can check the condition that
𝑥 satisfies 𝐸 in polynomial time by enumerating over all the equa-
tions in 𝐸, and for each such equation 𝑒, plug in the values of 𝑥 and
verify that 𝑒 is satisfied.

• ISET is in NP since for every graph 𝐺 and integer 𝑘, ISET(𝐺, 𝑘) =
1 if and only if there exists a set 𝑆 of 𝑘 vertices that contains no
pair of neighbors in 𝐺. We can check the condition that 𝑆 is an
independent set of size ≥ 𝑘 in polynomial time by first checking
that |𝑆| ≥ 𝑘 and then enumerating over all edges {𝑢, 𝑣} in 𝐺, and
for each such edge verify that either 𝑢 ∉ 𝑆 or 𝑣 ∉ 𝑆.

• LONGPATH is in NP since for every graph 𝐺 and integer 𝑘,
LONGPATH(𝐺, 𝑘) = 1 if and only if there exists a simple path 𝑃
in 𝐺 that is of length at least 𝑘. We can check the condition that 𝑃
is a simple path of length 𝑘 in polynomial time by checking that it
has the form (𝑣0, 𝑣1, … , 𝑣𝑘) where each 𝑣𝑖 is a vertex in 𝐺, no 𝑣𝑖 is
repeated, and for every 𝑖 ∈ [𝑘], the edge {𝑣𝑖, 𝑣𝑖+1} is present in the
graph.

• MAXCUT is in NP since for every graph 𝐺 and integer 𝑘,
MAXCUT(𝐺, 𝑘) = 1 if and only if there exists a cut (𝑆, 𝑆) in 𝐺 that
cuts at least 𝑘 edges. We can check that condition that (𝑆, 𝑆) is a
cut of value at least 𝑘 in polynomial time by checking that 𝑆 is a
subset of 𝐺’s vertices and enumerating over all the edges {𝑢, 𝑣} of
𝐺, counting those edges such that 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆 or vice versa.

14.1.2 Basic facts about NP
The definition of NP is one of the most important definitions of this
book, and is worth while taking the time to digest and internalize. The
following solved exercises establish some basic properties of this class.
As usual, I highly recommend that you try to work out the solutions
yourself.

Solved Exercise 14.2 — Verifying is no harder than solving. Prove that P ⊆ NP.
�

Solution:

Suppose that 𝐹 ∈ P. Define the following function 𝑉 : 𝑉 (𝑥0𝑛) =
1 iff 𝑛 = |𝑥| and 𝐹(𝑥) = 1. (𝑉 outputs 0 on all other inputs.) Since
𝐹 ∈ P we can clearly compute 𝑉 in polynomial time as well.

Let 𝑥 ∈ {0, 1}𝑛 be some string. If 𝐹(𝑥) = 1 then 𝑉 (𝑥0𝑛) = 1. On
the other hand, if 𝐹(𝑥) = 0 then for every 𝑤 ∈ {0, 1}𝑛, 𝑉 (𝑥𝑤) = 0.

np, np completeness, and the cook-levin theorem 457

Therefore, setting 𝑎 = 𝑏 = 1, we see that 𝑉 satisfies (14.1), and es-
tablishes that 𝐹 ∈ NP.

�

R
Remark 14.5 — NP does not mean non-polynomial!.
People sometimes think that NP stands for “non poly-
nomial time”. As Solved Exercise 14.2 shows, this is
far from the truth, and in fact every polynomial-time
computable function is in NP as well.
If 𝐹 is in NP it certainly does not mean that 𝐹 is hard
to compute (though it does not, as far as we know,
necessarily mean that it’s easy to compute either).
Rather, it means that 𝐹 is easy to verify, in the technical
sense of Definition 14.1.

Solved Exercise 14.3 — NP is in exponential time. Prove that NP ⊆ EXP.
�

Solution:

Suppose that 𝐹 ∈ NP and let 𝑉 be the polynomial-time com-
putable function that satisfies (14.1) and 𝑎 the corresponding
constant. Then given every 𝑥 ∈ {0, 1}𝑛, we can check whether
𝐹(𝑥) = 1 in time 𝑝𝑜𝑙𝑦(𝑛) ⋅ 2𝑛𝑎 = 𝑜(2𝑛𝑎+1) by enumerating over
all the 2𝑛𝑎 strings 𝑤 ∈ {0, 1}𝑛𝑎 and checking whether 𝑉 (𝑥𝑤) = 1,
in which case we return 1. If 𝑉 (𝑥𝑤) = 0 for every such 𝑤 then we
return 0. By construction, the algorithm above will run in time at
most exponential in its input length and by the definition of NP it
will return 𝐹(𝑥) for every 𝑥.

�

Solved Exercise 14.2 and Solved Exercise 14.3 together imply that

P ⊆ NP ⊆ EXP . (14.2)

The time hierarchy theorem (Theorem 12.9) implies that P ⊊ EXP
and hence at least one of the two inclusions P ⊆ NP or NP ⊆ EXP
is strict. It is believed that both of them are in fact strict inclusions.
That is, it is believed that there are functions in NP that cannot be
computed in polynomial time (this is the P ≠ NP conjecture) and
that there are functions 𝐹 in EXP for which we cannot even effi-
ciently certify that 𝐹(𝑥) = 1 for a given input 𝑥. One function 𝐹
that is believed to lie in EXP ⧵ NP is the function 3SAT defined as
3SAT(𝜑) = 1 − 3SAT(𝜑) for every 3CNF formula 𝜑. The conjecture
that 3SAT ∉ NP is known as the “NP ≠ co − NP” conjecture. It
implies the P ≠ NP conjecture (see Exercise 14.2).

458 introduction to theoretical computer science

We have previously informally equated the notion of 𝐹 ≤𝑝 𝐺 with
𝐹 being “no harder than 𝐺” and in particular have seen in Solved
Exercise 13.1 that if 𝐺 ∈ P and 𝐹 ≤𝑝 𝐺, then 𝐹 ∈ P as well. The
following exercise shows that if 𝐹 ≤𝑝 𝐺 then it is also “no harder to
verify” than 𝐺. That is, regardless of whether or not it is in P, if 𝐺 has
the property that solutions to it can be efficiently verified, then so does
𝐹 .

Solved Exercise 14.4 — Reductions and NP. Let 𝐹, 𝐺 ∶ {0, 1}∗ → {0, 1}.
Show that if 𝐹 ≤𝑝 𝐺 and 𝐺 ∈ NP then 𝐹 ∈ NP.

�

Solution:

Suppose that 𝐺 is in NP and in particular there exists 𝑎 and 𝑉 ∈
P such that for every 𝑦 ∈ {0, 1}∗, 𝐺(𝑦) = 1 ⇔ ∃𝑤∈{0,1}|𝑦|𝑎 𝑉 (𝑦𝑤) = 1.
Suppose also that 𝐹 ≤𝑝 𝐺 and so in particular there is a 𝑛𝑏-
time computable function 𝑅 such that 𝐹(𝑥) = 𝐺(𝑅(𝑥)) for all
𝑥 ∈ {0, 1}∗. Define 𝑉 ′ to be a Turing Machine that on input a pair
(𝑥, 𝑤) computes 𝑦 = 𝑅(𝑥) and returns 1 if and only if |𝑤| = |𝑦|𝑎
and 𝑉 (𝑦𝑤) = 1. Then 𝑉 ′ runs in polynomial time, and for every
𝑥 ∈ {0, 1}∗, 𝐹(𝑥) = 1 iff there exists 𝑤 of size |𝑅(𝑥)|𝑎 which is at
most polynomial in |𝑥| such that 𝑉 ′(𝑥, 𝑤) = 1, hence demonstrating
that 𝐹 ∈ NP.

�

14.2 FROM NP TO 3SAT: THE COOK-LEVIN THEOREM

We have seen everal example of problems for which we do not know
if their best algorithm is polynomial or exponential, but we can show
that they are in NP. That is, we don’t know if they are easy to solve, but
we do know that it is easy to verify a given solution. There are many,
many, many, more examples of interesting functions we would like to
compute that are easily shown to be in NP. What is quite amazing is
that if we can solve 3SAT then we can solve all of them!

The following is one of the most fundamental theorems in Com-
puter Science:

Theorem 14.6 — Cook-Levin Theorem. For every 𝐹 ∈ NP, 𝐹 ≤𝑝 3SAT.

We will soon show the proof of Theorem 14.6, but note that it im-
mediately implies that QUADEQ, LONGPATH, and MAXCUT all
reduce to 3SAT. Combining it with the reductions we’ve seen in Chap-
ter 13, it implies that all these problems are equivalent! For example,
to reduce QUADEQ to LONGPATH, we can first reduce QUADEQ to
3SAT using Theorem 14.6 and use the reduction we’ve seen in Theo-
rem 13.7 from 3SAT to LONGPATH. That is, since QUADEQ ∈ NP,

np, np completeness, and the cook-levin theorem 459

Theorem 14.6 implies that QUADEQ ≤𝑝 3SAT, and Theorem 13.7
implies that 3SAT ≤𝑝 LONGPATH, which by the transitivity of reduc-
tions (Solved Exercise 13.2) means that QUADEQ ≤𝑝 LONGPATH.
Similarly, since LONGPATH ∈ NP, we can use Theorem 14.6 and
Theorem 13.4 to show that LONGPATH ≤𝑝 3SAT ≤𝑝 QUADEQ,
concluding that LONGPATH and QUADEQ are computationally
equivalent.

There is of course nothing special about QUADEQ and LONGPATH
here: by combining (14.6) with the reductions we saw, we see that just
like 3SAT, every 𝐹 ∈ NP reduces to LONGPATH, and the same is true
for QUADEQ and MAXCUT. All these problems are in some sense
“the hardest in NP” since an efficient algorithm for any one of them
would imply an efficient algorithm for all the problems in NP. This
motivates the following definition:

Definition 14.7 — NP-hardness and NP-completeness. Let 𝐺 ∶ {0, 1}∗ →
{0, 1}. We say that 𝐺 is NP hard if for every 𝐹 ∈ NP, 𝐹 ≤𝑝 𝐺.

We say that 𝐺 is NP complete if 𝐺 is NP hard and 𝐺 ∈ NP.

The Cook-Levin Theorem (Theorem 14.6) can be rephrased as
saying that 3SAT is NP hard, and since it is also in NP, this means that
3SAT is NP complete. Together with the reductions of Chapter 13,
Theorem 14.6 shows that despite their superficial differences, 3SAT,
quadratic equations, longest path, independent set, and maximum
cut, are all NP-complete. Many thousands of additional problems
have been shown to be NP-complete, arising from all the sciences,
mathematics, economics, engineering and many other fields. (For a
few examples, see this Wikipedia page and this website.)

 Big Idea 21 If a single NP-complete has a polynomial-time algo-
rithm, then there is such an algorithm for every decision problem that
corresponds to the existence of an efficiently-verifiable solution.

14.2.1 What does this mean?
As we’ve seen in Solved Exercise 14.2, P ⊆ NP. The most famous con-
jecture in Computer Science is that this containment is strict. That is,
it is widely conjectured that P ≠ NP. One way to refute the conjec-
ture that P ≠ NP is to give a polynomial-time algorithm for even a
single one of the NP-complete problems such as 3SAT, Max Cut, or
the thousands of others that have been studied in all fields of human
endeavors. The fact that these problems have been studied by so many
people, and yet not a single polynomial-time algorithm for any of
them has been found, supports that conjecture that indeed P ≠ NP. In

https://goo.gl/NomnoU
https://goo.gl/nfJHWv

460 introduction to theoretical computer science

Figure 14.3: The world if P ≠ NP (left) and P = NP
(right). In the former case the set of NP-complete
problems is disjoint from P and Ladner’s theorem
shows that there exist problems that are neither in
P nor are NP-complete. (There are remarkably few
natural candidates for such problems, with some
prominent examples being decision variants of
problems such as integer factoring, lattice shortest
vector, and finding Nash equilibria.) In the latter case
that P = NP the notion of NP-completeness loses its
meaning, as essentially all functions in P (save for the
trivial constant zero and constant one functions) are
NP-complete.

Figure 14.4: A rough illustration of the (conjectured)
status of problems in exponential time. Darker colors
correspond to higher running time, and the circle in
the middle is the problems in P. NP is a (conjectured
to be proper) superclass of P and the NP-complete
problems (or NPC for short) are the “hardest” prob-
lems in NP, in the sense that a solution for one of
them implies a solution for all other problems in NP.
It is conjectured that all the NP-complete problems
require at least exp(𝑛𝜖) time to solve for a constant
𝜖 > 0, and many require exp(Ω(𝑛)) time. The per-
manent is not believed to be contained in NP though
it is NP-hard, which means that a polynomial-time
algorithm for it implies that P = NP.

fact, for many of these problems (including all the ones we mentioned
above), we don’t even know of a 2𝑜(𝑛)-time algorithm! However, to the
frustration of computer scientists, we have not yet been able to prove
that P ≠ NP or even rule out the existence of an 𝑂(𝑛)-time algorithm
for 3SAT. Resolving whether or not P = NP is known as the P vs NP
problem. A million-dollar prize has been offered for the solution of
this problem, a popular book has been written, and every year a new
paper comes out claiming a proof of P = NP or P ≠ NP, only to wither
under scrutiny.

One of the mysteries of computation is that people have observed a
certain empirical “zero-one law” or “dichotomy” in the computational
complexity of natural problems, in the sense that many natural prob-
lems are either in P (often in TIME(𝑂(𝑛)) or TIME(𝑂(𝑛2))), or they
are are NP hard. This is related to the fact that for most natural prob-
lems, the best known algorithm is either exponential or polynomial,
with not too many examples where the best running time is some
strange intermediate complexity such as 22√log𝑛 . However, it is be-
lieved that there exist problems in NP that are neither in P nor are NP-
complete, and in fact a result known as “Ladner’s Theorem” shows
that if P ≠ NP then this is indeed the case (see also Exercise 14.1 and
Fig. 14.3).

14.2.2 The Cook-Levin Theorem: Proof outline
We will now prove the Cook-Levin Theorem, which is the underpin-
ning to a great web of reductions from 3SAT to thousands of problems
across great many fields. Some problems that have been shown to be
NP-complete include: minimum-energy protein folding, minimum
surface-area foam configuration, map coloring, optimal Nash equi-
librium, quantum state entanglement, minimum supersequence of
a genome, minimum codeword problem, shortest vector in a lattice,
minimum genus knots, positive Diophantine equations, integer pro-
gramming, and many many more. The worst-case complexity of all
these problems is (up to polynomial factors) equivalent to that of
3SAT, and through the Cook-Levin Theorem, to all problems in NP.

To prove Theorem 14.6 we need to show that 𝐹 ≤𝑝 3SAT for every
𝐹 ∈ NP. We will do so in three stages. We define two intermediate
problems: NANDSAT and 3NAND. We will shortly show the def-
initions of these two problems, but Theorem 14.6 will follow from
combining the following three results:

1. NANDSAT is NP hard (Lemma 14.8).

2. NANDSAT ≤𝑝 3NAND (Lemma 14.9).

3. 3NAND ≤𝑝 3SAT (Lemma 14.10).

https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/P_versus_NP_problem
http://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.amazon.com/dp/B00BKZYGUY

np, np completeness, and the cook-levin theorem 461

By the transitivity of reductions, it will follow that for every 𝐹 ∈
NP,

𝐹 ≤𝑝 NANDSAT ≤𝑝 3NAND ≤𝑝 3SAT (14.3)

hence establishing Theorem 14.6.
We will prove these three results Lemma 14.8, Lemma 14.9 and

Lemma 14.10 one by one, providing the requisite definitions as we go
along.

14.3 THE NANDSAT PROBLEM, AND WHY IT IS NP HARD.

The function NANDSAT ∶ {0, 1}∗ → {0, 1} is defined as follows:

• The input to NANDSAT is a string 𝑄 representing a NAND-CIRC
program (or equivalently, a circuit with NAND gates).

• The output of NANDSAT on input 𝑄 is 1 if and only if there exists a
string 𝑤 ∈ {0, 1}𝑛 (where 𝑛 is the number of inputs to 𝑄) such that
𝑄(𝑤) = 1.

Solved Exercise 14.5 — 𝑁𝐴𝑁𝐷𝑆𝐴𝑇 ∈ NP. Prove that NANDSAT ∈ NP.
�

Solution:

We have seen that the circuit (or straightline program) evalua-
tion problem can be computed in polynomial time. Specifically,
given a NAND-CIRC program 𝑄 of 𝑠 lines and 𝑛 inputs, and
𝑤 ∈ {0, 1}𝑛, we can evaluate 𝑄 on the input 𝑤 in time which is
polynomial in 𝑠 and hence verify whether or not 𝑄(𝑤) = 1.

�

We now prove that NANDSAT is NP hard.

Lemma 14.8 NANDSAT is NP hard.

Proof Idea:

The proof closely follows the proof that P ⊆ P/poly (Theorem 12.12
, see also Section 12.6.2). Specifically, if 𝐹 ∈ NP then there is a poly-
nomial time Turing machine 𝑀 and positive integer 𝑎 such that for
every 𝑥 ∈ {0, 1}𝑛, 𝐹(𝑥) = 1 iff there is some 𝑤 ∈ {0, 1}𝑛𝑎 such that
𝑀(𝑥𝑤) = 1. The proof that P ⊆ P/poly gave us way (via “unrolling the
loop”) to come up in polynomial time with a Boolean circuit 𝐶 on 𝑛𝑎

inputs that computes the function 𝑤 ↦ 𝑀(𝑥𝑤). We can then translate
𝐶 into an equivalent NAND circuit (or NAND-CIRC program) 𝑄. We
see that there is a string 𝑤 ∈ {0, 1}𝑛𝑎 such that 𝑄(𝑤) = 1 if and only if
there is such 𝑤 satisfying 𝑀(𝑥𝑤) = 1 which (by definition) happens if
and only if 𝐹(𝑥) = 1. Hence the translation of 𝑥 into the circuit 𝑄 is a
reduction showing 𝐹 ≤𝑝 NANDSAT.

462 introduction to theoretical computer science

⋆

P
The proof is a little bit technical but ultimately follows
quite directly from the definition of NP, as well as the
ability to “unroll the loop” of NAND-TM programs as
discussed in Section 12.6.2. If you find it confusing, try
to pause here and think how you would implement
in your favorite programming language the function
unroll which on input a NAND-TM program 𝑃
and numbers 𝑇 , 𝑛 outputs an 𝑛-input NAND-CIRC
program 𝑄 of 𝑂(|𝑇 |) lines such that for every input
𝑧 ∈ {0, 1}𝑛, if 𝑃 halts on 𝑧 within at most 𝑇 steps and
outputs 𝑦, then 𝑄(𝑧) = 𝑦.

Proof of Lemma 14.8. Let 𝐹 ∈ NP. To prove Lemma 14.8 we need to
give a polynomial-time computable function that will map every 𝑥∗ ∈
{0, 1}∗ to a NAND-CIRC program 𝑄 such that 𝐹(𝑥) = NANDSAT(𝑄).

Let 𝑥∗ ∈ {0, 1}∗ be such a string and let 𝑛 = |𝑥∗| be its length. By
Definition 14.1 there exists 𝑉 ∈ P and positive 𝑎ℕ such that 𝐹(𝑥∗) = 1
if and only if there exists 𝑤 ∈ {0, 1}𝑛𝑎 satisfying 𝑉 (𝑥∗𝑤) = 1.

Let 𝑚 = 𝑛𝑎. Since 𝑉 ∈ P there is some NAND-TM program 𝑃 ∗ that
computes 𝑉 on inputs of the form 𝑥𝑤 with 𝑥 ∈ {0, 1}𝑛 and 𝑤 ∈ {0, 1}𝑚

in at most (𝑛 + 𝑚)𝑐 time for some constant 𝑐. Using our “unrolling
the loop NAND-TM to NAND compiler” of Theorem 12.14, we can
obtain a NAND-CIRC program 𝑄′ that has 𝑛 + 𝑚 inputs and at most
𝑂((𝑛 + 𝑚)2𝑐) lines such that 𝑄′(𝑥𝑤) = 𝑃 ∗(𝑥𝑤) for every 𝑥 ∈ {0, 1}𝑛

and 𝑤 ∈ {0, 1}𝑚.
We can then use a simple “hardwiring” technique, reminiscent of

Remark 8.12 to map 𝑄′ into a circuit/NAND-CIRC program 𝑄 on 𝑚
inputs such that 𝑄(𝑤) = 𝑄′(𝑥∗𝑤) for every 𝑤 ∈ {0, 1}𝑚.

CLAIM: There is a polynomial-time algorithm that on input a
NAND-CIRC program 𝑄′ on 𝑛 + 𝑚 inputs and 𝑥∗ ∈ {0, 1}𝑛, outputs
a NAND-CIRC program 𝑄 such that for every 𝑤 ∈ {0, 1}𝑛, 𝑄(𝑤) =
𝑄′(𝑥∗𝑤).

PROOF OF CLAIM: We can do so by adding a few lines to ensure
that the variables zero and one are 0 and 1 respectively, and then
simply replacing any reference in 𝑄′ to an input 𝑥𝑖 with 𝑖 ∈ [𝑛] the
corresponding value based on 𝑥∗

𝑖 . See Fig. 14.5 for an implementation
of this reduction in Python.

Our final reduction maps an input 𝑥∗, into the NAND-CIRC pro-
gram 𝑄 obtained above. By the above discussion, this reduction runs
in polynomial time. Since we know that 𝐹(𝑥∗) = 1 if and only if there
exists 𝑤 ∈ {0, 1}𝑚 such that 𝑃 ∗(𝑥∗𝑤) = 1, this means that 𝐹(𝑥∗) = 1 if
and only if NANDSAT(𝑄) = 1, which is what we wanted to prove.

np, np completeness, and the cook-levin theorem 463

�

Figure 14.5: Given an 𝑇 -line NAND-CIRC program
𝑄 that has 𝑛 + 𝑚 inputs and some 𝑥∗ ∈ {0, 1}𝑛,
we can transform 𝑄 into a 𝑇 + 3 line NAND-CIRC
program 𝑄′ that computes the map 𝑤 ↦ 𝑄(𝑥∗𝑤)
for 𝑤 ∈ {0, 1}𝑚 by simply adding code to compute
the zero and one constants, replacing all references to
X[𝑖] with either zero or one depending on the value
of 𝑥∗

𝑖 , and then replacing the remaining references
to X[𝑗] with X[𝑗 − 𝑛]. Above is Python code that
implements this transformation, as well as an example
of its execution on a simple program.

14.4 THE 3NAND PROBLEM

The 3NAND problem is defined as follows:

• The input is a logical formula Ψ on a set of variables 𝑧0, … , 𝑧𝑟−1
which is an AND of constraints of the form 𝑧𝑖 = NAND(𝑧𝑗, 𝑧𝑘).

• The output is 1 if and only if there is an input 𝑧 ∈ {0, 1}𝑟 that
satisfies all of the constraints.

For example, the following is a 3NAND formula with 5 variables
and 3 constraints:

Ψ = (𝑧3 = NAND(𝑧0, 𝑧2))∧(𝑧1 = NAND(𝑧0, 𝑧2))∧(𝑧4 = NAND(𝑧3, 𝑧1)) .
(14.4)

In this case 3NAND(Ψ) = 1 since the assignment 𝑧 = 01010 satisfies
it. Given a 3NAND formula Ψ on 𝑟 variables and an assignment 𝑧 ∈
{0, 1}𝑟, we can check in polynomial time whether Ψ(𝑧) = 1, and hence
3NAND ∈ NP. We now prove that 3NAND is NP hard:

Lemma 14.9 NANDSAT ≤𝑝 3NAND.

Proof Idea:

To prove Lemma 14.9 we need to give a polynomial-time map from
every NAND-CIRC program 𝑄 to a 3NAND formula Ψ such that there
exists 𝑤 such that 𝑄(𝑤) = 1 if and only if there exists 𝑧 satisfying Ψ.
For every line 𝑖 of 𝑄, we define a corresponding variable 𝑧𝑖 of Ψ. If
the line 𝑖 has the form foo = NAND(bar,blah) then we will add the
clause 𝑧𝑖 = NAND(𝑧𝑗, 𝑧𝑘) where 𝑗 and 𝑘 are the last lines in which bar

and blah were written to. We will also set variables corresponding
to the input variables, as well as add a clause to ensure that the final

464 introduction to theoretical computer science

output is 1. The resulting reduction can be implemented in about a
dozen lines of Python, see Fig. 14.6.

⋆

Figure 14.6: Python code to reduce an instance 𝑄 of
NANDSAT to an instance Ψ of 3NAND. In the exam-
ple above we transform the NAND-CIRC program
xor5 which has 5 input variables and 16 lines, into
a 3NAND formula Ψ that has 24 variables and 20
clauses. Since xor5 outputs 1 on the input 1, 0, 0, 1, 1,
there exists an assignment 𝑧 ∈ {0, 1}24 to Ψ such that
(𝑧0, 𝑧1, 𝑧2, 𝑧3, 𝑧4) = (1, 0, 0, 1, 1) and Ψ evaluates to
true on 𝑧.

Proof of Lemma 14.9. To prove Lemma 14.9 we need to give a reduction
from NANDSAT to 3NAND. Let 𝑄 be a NAND-CIRC program with
𝑛 inputs, one output, and 𝑚 lines. We can assume without loss of
generality that 𝑄 contains the variables one and zero as usual.

We map 𝑄 to a 3NAND formula Ψ as follows:

• Ψ has 𝑚 + 𝑛 variables 𝑧0, … , 𝑧𝑚+𝑛−1.

• The first 𝑛 variables 𝑧0, … , 𝑧𝑛−1 will corresponds to the inputs of 𝑄.
The next 𝑚 variables 𝑧𝑛, … , 𝑧𝑛+𝑚−1 will correspond to the 𝑚 lines
of 𝑄.

• For every ℓ ∈ {𝑛, 𝑛 + 1, … , 𝑛 + 𝑚}, if the ℓ − 𝑛-th line of the program
𝑄 is foo = NAND(bar,blah) then we add to Ψ the constraint 𝑧ℓ =
NAND(𝑧𝑗, 𝑧𝑘) where 𝑗 − 𝑛 and 𝑘 − 𝑛 correspond to the last lines
in which the variables bar and blah (respectively) were written to.
If one or both of bar and blah was not written to before then we
use 𝑧ℓ0

instead of the corresponding value 𝑧𝑗 or 𝑧𝑘 in the constraint,
where ℓ0 − 𝑛 is the line in which zero is assigned a value. If one or
both of bar and blah is an input variable X[i] then we use 𝑧𝑖 in the
constraint.

• Let ℓ∗ be the last line in which the output y_0 is assigned a value.
Then we add the constraint 𝑧ℓ∗ = NAND(𝑧ℓ0

, 𝑧ℓ0
) where ℓ0 − 𝑛 is as

above the last line in which zero is assigned a value. Note that this
is effectively the constraint 𝑧ℓ∗ = NAND(0, 0) = 1.

np, np completeness, and the cook-levin theorem 465

Figure 14.7: A 3NAND instance that is obtained by
taking a NAND-TM program for computing the
AND function, unrolling it to obtain a NANDSAT
instance, and then composing it with the reduction of
Lemma 14.9.

To complete the proof we need to show that there exists 𝑤 ∈ {0, 1}𝑛

s.t. 𝑄(𝑤) = 1 if and only if there exists 𝑧 ∈ {0, 1}𝑛+𝑚 that satisfies all
constraints in Ψ. We now show both sides of this equivalence.

Part I: Completeness. Suppose that there is 𝑤 ∈ {0, 1}𝑛 s.t. 𝑄(𝑤) =
1. Let 𝑧 ∈ {0, 1}𝑛+𝑚 be defined as follows: for 𝑖 ∈ [𝑛], 𝑧𝑖 = 𝑤𝑖 and
for 𝑖 ∈ {𝑛, 𝑛 + 1, … , 𝑛 + 𝑚} 𝑧𝑖 equals the value that is assigned in
the (𝑖 − 𝑛)-th line of 𝑄 when executed on 𝑤. Then by construction
𝑧 satisfies all of the constraints of Ψ (including the constraint that
𝑧ℓ∗ = NAND(0, 0) = 1 since 𝑄(𝑤) = 1.)

Part II: Soundness. Suppose that there exists 𝑧 ∈ {0, 1}𝑛+𝑚 satisfy-
ing Ψ. Soundness will follow by showing that 𝑄(𝑧0, … , 𝑧𝑛−1) = 1 (and
hence in particular there exists 𝑤 ∈ {0, 1}𝑛, namely 𝑤 = 𝑧0 ⋯ 𝑧𝑛−1,
such that 𝑄(𝑤) = 1). To do this we will prove the following claim
(∗): for every ℓ ∈ [𝑚], 𝑧ℓ+𝑛 equals the value assigned in the ℓ-th step
of the execution of the program 𝑄 on 𝑧0, … , 𝑧𝑛−1. Note that because 𝑧
satisfies the constraints of Ψ, (∗) is sufficient to prove the soundness
condition since these constraints imply that the last value assigned to
the variable y_0 in the execution of 𝑄 on 𝑧0 ⋯ 𝑤𝑛−1 is equal to 1. To
prove (∗) suppose, towards a contradiction, that it is false, and let ℓ be
the smallest number such that 𝑧ℓ+𝑛 is not equal to the value assigned
in the ℓ-th step of the execution of 𝑄 on 𝑧0, … , 𝑧𝑛−1. But since 𝑧 sat-
isfies the constraints of Ψ, we get that 𝑧ℓ+𝑛 = NAND(𝑧𝑖, 𝑧𝑗) where
(by the assumption above that ℓ is smallest with this property) these
values do correspond to the values last assigned to the variables on the
righthand side of the assignment operator in the ℓ-th line of the pro-
gram. But this means that the value assigned in the ℓ-th step is indeed
simply the NAND of 𝑧𝑖 and 𝑧𝑗, contradicting our assumption on the
choice of ℓ.

�

14.5 FROM 3NAND TO 3SAT
The final step in the proof of Theorem 14.6 is the following:

Lemma 14.10 3NAND ≤𝑝 3SAT.

Proof Idea:

To prove Lemma 14.10 we need to map a 3NAND formula 𝜑 into
a 3SAT formula 𝜓 such that 𝜑 is satisfiable if and only if 𝜓 is. The
idea is that we can transform every NAND constraint of the form
𝑎 = NAND(𝑏, 𝑐) into the AND of ORs involving the variables 𝑎, 𝑏, 𝑐
and their negations, where each of the ORs contains at most three
terms. The construction is fairly straightforward, and the details are
given below.

⋆

466 introduction to theoretical computer science

1 The resulting formula will have some of the OR’s
involving only two variables. If we wanted to insist on
each formula involving three distinct variables we can
always add a “dummy variable” 𝑧𝑛+𝑚 and include it
in all the OR’s involving only two variables, and add a
constraint requiring this dummy variable to be zero.

P
It is a good exercise for you to try to find a 3CNF for-
mula 𝜉 on three variables 𝑎, 𝑏, 𝑐 such that 𝜉(𝑎, 𝑏, 𝑐) is
true if and only if 𝑎 = NAND(𝑏, 𝑐). Once you do so, try
to see why this implies a reduction from 3NAND to
3SAT, and hence completes the proof of Lemma 14.10

Figure 14.8: Code and example output for the reduc-
tion given in Lemma 14.10 of 3NAND to 3SAT.

Proof of Lemma 14.10. The constraint

𝑧𝑖 = NAND(𝑧𝑗, 𝑧𝑘) (14.5)

is satisfied if 𝑧𝑖 = 1 whenever (𝑧𝑗, 𝑧𝑘) ≠ (1, 1). By going through all
cases, we can verify that (14.5) is equivalent to the constraint

(𝑧𝑖 ∨ 𝑧𝑗 ∨ 𝑧𝑘) ∧ (𝑧𝑖 ∨ 𝑧𝑗) ∧ (𝑧𝑖 ∨ 𝑧𝑘) . (14.6)

Indeed if 𝑧𝑗 = 𝑧𝑘 = 1 then the first constraint of Eq. (14.6) is only
true if 𝑧𝑖 = 0. On the other hand, if either of 𝑧𝑗 or 𝑧𝑘 equals 0 then un-
less 𝑧𝑖 = 1 either the second or third constraints will fail. This means
that, given any 3NAND formula 𝜑 over 𝑛 variables 𝑧0, … , 𝑧𝑛−1, we can
obtain a 3SAT formula 𝜓 over the same variables by replacing every
3NAND constraint of 𝜑 with three 3OR constraints as in Eq. (14.6).1
Because of the equivalence of (14.5) and (14.6), the formula 𝜓 sat-
isfies that 𝜓(𝑧0, … , 𝑧𝑛−1) = 𝜑(𝑧0, … , 𝑧𝑛−1) for every assignment
𝑧0, … , 𝑧𝑛−1 ∈ {0, 1}𝑛 to the variables. In particular 𝜓 is satisfiable if
and only if 𝜑 is, thus completing the proof.

�

14.6 WRAPPING UP

We have shown that for every function 𝐹 in NP, 𝐹 ≤𝑝 NANDSAT ≤𝑝
3NAND ≤𝑝 3SAT, and so 3SAT is NP-hard. Since in Chapter 13 we
saw that 3SAT ≤𝑝 QUADEQ, 3SAT ≤𝑝 ISET, 3SAT ≤𝑝 MAXCUT
and 3SAT ≤𝑝 LONGPATH, all these problems are NP-hard as well.

np, np completeness, and the cook-levin theorem 467

Figure 14.9: An instance of the independent set problem
obtained by applying the reductions NANDSAT ≤𝑝
3NAND ≤𝑝 3SAT ≤𝑝 ISAT starting with the xor5
NAND-CIRC program.

Finally, since all the aforementioned problems are in NP, they are
all in fact NP-complete and have equivalent complexity. There are
thousands of other natural problems that are NP-complete as well.
Finding a polynomial-time algorithm for any one of them will imply a
polynomial-time algorithm for all of them.

Figure 14.10: We believe that P ≠ NP and all NP
complete problems lie outside of P, but we cannot
rule out the possiblity that P = NP. However, we
can rule out the possiblity that some NP-complete
problems are in P and other do not, since we know
that if even one NP-complete problem is in P then
P = NP. The relation between P/poly and NP is
not known though it can be shown that if one NP-
complete problem is in P/poly then NP ⊆ P/poly.

✓ Lecture Recap

• Many of the problems for which we don’t know
polynomial-time algorithms are NP-complete,
which means that finding a polynomial-time algo-
rithm for one of them would imply a polynomial-
time algorithm for all of them.

• It is conjectured that NP ≠ P which means that
we believe that polynomial-time algorithms for
these problems are not merely unknown but are
nonexistent.

• While an NP-hardness result means for example
that a full-fledged “textbook” solution to a problem
such as MAX-CUT that is as clean and general as
the algorithm for MIN-CUT probably does not
exist, it does not mean that we need to give up
whenever we see a MAX-CUT instance. Later in
this course we will discuss several strategies to deal

468 introduction to theoretical computer science

2 Hint: Use the function 𝐹 that on input a formula 𝜑
and a string of the form 1𝑡, outputs 1 if and only if 𝜑
is satisfiable and 𝑡 = |𝜑|log |𝜑|.

3 Hint: Prove and then use the fact that P is closed
under complement.

with NP-hardness, including average-case complexity
and approximation algorithms.

14.7 EXERCISES

Exercise 14.1 — Poor man’s Ladner’s Theorem. Prove that if there is no
𝑛𝑂(log2 𝑛) time algorithm for 3SAT then there is some 𝐹 ∈ NP such
that 𝐹 ∉ P and 𝐹 is not NP complete.2

�

Exercise 14.2 — NP ≠ co − NP ⇒ NP ≠ P. Let 3SAT be the function
that on input a 3CNF formula 𝜑 return 1 − 3SAT(𝜑). Prove that if
3SAT ∉ NP then P ≠ NP. See footnote for hint.3

�

Exercise 14.3 Define WSAT to be the following function: the input is a
CNF formula 𝜑 where each clause is the OR of one to three variables
(without negations), and a number 𝑘 ∈ ℕ. For example, the following
formula can be used for a valid input to WSAT: 𝜑 = (𝑥5 ∨ 𝑥2 ∨ 𝑥1) ∧
(𝑥1 ∨ 𝑥3 ∨ 𝑥0) ∧ (𝑥2 ∨ 𝑥4 ∨ 𝑥0). The output WSAT(𝜑, 𝑘) = 1 if and
only if there exists a satisfying assignment to 𝜑 in which exactly 𝑘
of the variables get the value 1. For example for the formula above
WSAT(𝜑, 2) = 1 since the assignment (1, 1, 0, 0, 0, 0) satisfies all the
clauses. However WSAT(𝜑, 1) = 0 since there is no single variable
appearing in all clauses.

Prove that WSAT is NP-complete.
�

Exercise 14.4 In the employee recruiting problem we are given a list of
potential employees, each of which has some subset of 𝑚 potential
skills, and a number 𝑘. We need to assemble a team of 𝑘 employees
such that for every skill there would be one member of the team with
this skill.

For example, if Alice has the skills “C programming”, “NAND
programming” and “Solving Differential Equations”, Bob has the
skills “C programming” and “Solving Differential Equations”, and
Charlie has the skills “NAND programming” and “Coffee Brewing”,
then if we want a team of two people that covers all the four skills, we
would hire Alice and Charlie.

Define the function EMP s.t. on input the skills 𝐿 of all potential
employees (in the form of a sequence 𝐿 of 𝑛 lists 𝐿1, … , 𝐿𝑛, each
containing distinct numbers between 0 and 𝑚), and a number 𝑘,
EMP(𝐿, 𝑘) = 1 if and only if there is a subset 𝑆 of 𝑘 potential em-
ployees such that for every skill 𝑗 in [𝑚], there is an employee in 𝑆 that
has the skill 𝑗.

np, np completeness, and the cook-levin theorem 469

Prove that EMP is NP complete.
�

Exercise 14.5 — Balanced max cut. Prove that the “balanced variant” of
the maximum cut problem is NP-complete, where this is defined as
BMC ∶ {0, 1}∗ → {0, 1} where for every graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ,
BMC(𝐺, 𝑘) = 1 if and only if there exists a cut 𝑆 in 𝐺 cutting at least 𝑘
edges such that |𝑆| = |𝑉 |/2.

�

Exercise 14.6 — Regular expression intersection. Let MANYREGS be the fol-
lowing function: On input a list of regular expressions 𝑒𝑥𝑝0, … , exp𝑚
(represented as strings in some standard way), output 1 if and only if
there is a single string 𝑥 ∈ {0, 1}∗ that matches all of them. Prove that
MANYREGS is NP-hard.

�

14.8 BIBLIOGRAPHICAL NOTES

Aaronson’s 120 page survey [Aar16] is a beautiful and extensive ex-
position to the P vs NP problem, its importance and status. See also
as well as Chapter 3 in Wigderson’s excellent book [Wig19]. Johnson
[Joh12] gives a survey of the historical development of the theory of
NP completeness. The following web page keeps a catalog of failed
attempts at settling P vs NP. At the time of this writing, it lists about
110 papers claiming to resolve the question, of which about 60 claim to
prove that P = NP and about 50 claim to prove that P ≠ NP.

Eugene Lawler’s quote on the “mystical power of twoness” was
taken from the wonderful book “The Nature of Computation” by
Moore and Mertens. See also this memorial essay on Lawler by
Lenstra.

https://goo.gl/bFHsd9
https://pure.tue.nl/ws/files/1506049/511307.pdf

	III Efficient algorithms
	NP, NP completeness, and the Cook-Levin Theorem
	The class NP
	Examples of functions in NP
	Basic facts about NP

	From NP to 3SAT: The Cook-Levin Theorem
	What does this mean?
	The Cook-Levin Theorem: Proof outline

	The NANDSAT Problem, and why it is NP hard.
	The 3NAND problem
	From 3NAND to 3SAT
	Wrapping up
	Exercises
	Bibliographical notes

