CS3102
September 6

Recall: "Carnot Engine" of computing

- What "type" is the input?
- String (bit strings)
- What "type" is the output?
- String
- What have we put in the black box so far?
- Circuits of logic gates
- Python/Java/C++
- X8086
- NAND-CIRC

What goes in here?

What do we compute on?

- Always strings! (that represent other things)
- Images
- DNA
- Web pages
- Temperature
- To compute on non-string things, we need a representation scheme
- Function $E: U \rightarrow\{0,1\}^{*}$
- E should be one-to-one

Model of Computing

- To define a model of computing, we need:
- A way to give it input
- Pre-defining the values of the "input" gates
- A way to get output out of it
- Pre-defined some gates as "output" gates, and when execution stopped, their values defined the output
- How do we go from input to output?
- Execution model: deterministic (non-random)
- For any gate where all of its incoming wires had defined values, its value becomes the result of applying a particular operation to the values its incoming wires
- Representation
- Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT; NAND:NAND/INPUT/OUTPUT)

Showing AON=NAND

- Anything I can do with AON I can also do with NAND
- Vice-versa
- Two models of computing are "equivalent" if every function you can implement with one of them you can also implement with the other
- Find a way of converting instances of one model into instances of the other such that we compute the same function
- To go from AON to NAND:
- Do AND with NANDs
- Do OR with NANDs
- NOT with NANDs
- To go from NAND to AON:
- Do NAND with ANDs/Ors/NOTs

Countable vs. Uncountable

- Countable:
- The cardinality is less than or equal to that of the natural numbers
- It's either:
- Finite
- It has a bijection with \mathbb{N}
- Uncountable:
- It's bigger than \mathbb{N}
- It's both:
- Infinite
- Has no bijection with \mathbb{N}

To show uncountable

- Diagonalization
- Show a 1-1 mapping from a known uncountable set to this one
- S is uncountable
- $f: S \rightarrow T$
- f is one-to-one
- $|S| \leq|T|$

Diagonalization

- A special kind of proof by contradiction

- Structure:
- Observe our set is infinite
- Toward a contradiction, suppose the set is countable, meaning it has bijection with \mathbb{N}
- This means we can list all of the elements
- To find a contradiction that the bijection exists we show that no matter how you might try to list all the elements, your list MUST be incomplete
- Constructing an element we can guarantee is different from everything in the list
- Following a "diagonal"

$\mid\{$ inf inite python programs $\}|>|\mathbb{N}|$

- Consider the set of a "infinitely-long" python programs
- An infinitely-long python program is a string where there are an infinite number of prefixes that are valid python programs

$\mid\{$ infinite python programs\}| $>|\mathbb{N}|$

- Consider the set of a "infinitely-long" python programs
- An infinitely-long python program is a string where there are an infinite number of prefixes that are valid python programs

