
CS3102
September 6



Recall: “Carnot Engine” of computing

• What “type” is the input?
• String (bit strings)

• What “type” is the output?
• String

• What have we put in the black box so far?
• Circuits of logic gates

• Python/Java/C++

• X8086

• NAND-CIRC

Computing 
Machine 

/ Program / 
Algorithm

Input

Output

What goes in here?



What do we compute on?

• Always strings! (that represent other things)
• Images

• DNA

• Web pages

• Temperature

• To compute on non-string things, we need a representation scheme
• Function 𝐸:𝑈 → 0,1 ∗

• 𝐸 should be one-to-one



Model of Computing

• To define a model of computing, we need:
• A way to give it input

• Pre-defining the values of the “input” gates

• A way to get output out of it
• Pre-defined some gates as “output” gates, and when execution stopped, their values 

defined the output

• How do we go from input to output?
• Execution model: deterministic (non-random)
• For any gate where all of its incoming wires had defined values, its value becomes the 

result of applying a particular operation to the values its incoming wires

• Representation 
• Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT; 

NAND:NAND/INPUT/OUTPUT)



Showing AON=NAND

• Anything I can do with AON I can also do with NAND
• Vice-versa

• Two models of computing are “equivalent” if every function you can 
implement with one of them you can also implement with the other

• Find a way of converting instances of one model into instances of the other 
such that we compute the same function

• To go from AON to NAND:
• Do AND with NANDs
• Do OR with NANDs
• NOT with NANDs

• To go from NAND to AON:
• Do NAND with ANDs/Ors/NOTs



Countable vs. Uncountable

• Countable:
• The cardinality is less than or equal to that of the natural numbers

• It’s either:
• Finite

• It has a bijection with ℕ

• Uncountable:
• It’s bigger than ℕ

• It’s both:
• Infinite

• Has no bijection with ℕ



To show uncountable

• Diagonalization

• Show a 1-1 mapping from a known uncountable set to this one
• 𝑆 is uncountable

• 𝑓: 𝑆 → 𝑇

• 𝑓 is one-to-one

• 𝑆 ≤ |𝑇|



Diagonalization

• A special kind of proof by contradiction

• Structure:
• Observe our set is infinite

• Toward a contradiction, suppose the set is countable, meaning it has bijection 
with ℕ
• This means we can list all of the elements

• To find a contradiction that the bijection exists we show that no matter how 
you might try to list all the elements, your list MUST be incomplete
• Constructing an element we can guarantee is different from everything in the list

• Following a “diagonal”



0,1 ∞ > |ℕ|



{𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑦𝑡ℎ𝑜𝑛 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠} > |ℕ|

• Consider the set of a “infinitely-long” python programs
• An infinitely-long python program is a string where there are an infinite 

number of prefixes that are valid python programs

x=1
x=2
x=3
x=4
x=5
x=6
…

while(2<3):
print(“hello”)

print(“hello”)
print(“hello”)
print(“hello”)
print(“hello”)
print(“hello”)
…

while(2<3):
print(“hello”)

print(y)
print(“hello”)
print(“hello”)
print(“hello”)
print(“hello”)
…



{𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑦𝑡ℎ𝑜𝑛 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠} > |ℕ|

• Consider the set of a “infinitely-long” python programs
• An infinitely-long python program is a string where there are an infinite 

number of prefixes that are valid python programs


