
CS3102
September 6



Questions



Recall: “Carnot Engine” of computing

• What “type” is the input?
• String (bit strings)

• What “type” is the output?
• String

• What have we put in the black box so far?
• Circuits of logic gates

• Python/Java/C++

• X8086

• NAND-CIRC

Computing 
Machine 

/ Program / 
Algorithm

Input

Output

What goes in here?



What do we compute on?

• Always strings! (that represent other things)
• Images

• DNA

• Web pages

• Temperature

• To compute on non-string things, we need a representation scheme
• Function 𝐸:𝑈 → 0,1 ∗

• 𝐸 should be one-to-one



Model of Computing

• To define a model of computing, we need:
• A way to give it input

• Pre-defining the values of the “input” gates

• A way to get output out of it
• Pre-defined some gates as “output” gates, and when execution stopped, their values 

defined the output

• How do we go from input to output?
• Execution model: deterministic (non-random)
• For any gate where all of its incoming wires had defined values, its value becomes the 

result of applying a particular operation to the values its incoming wires

• Representation 
• Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT; 

NAND:NAND/INPUT/OUTPUT)



Showing AON=NAND

• Anything I can do with AON I can also do with NAND
• Vice-versa

• Two models of computing are “equivalent” if every function you can 
implement with one of them you can also implement with the other

• Find a way of converting instances of one model into instances of the other 
such that we compute the same function

• To go from AON to NAND:
• Do AND with NANDs
• Do OR with NANDs
• NOT with NANDs

• To go from NAND to AON:
• Do NAND with ANDs/Ors/NOTs



Syntactic Sugar

• What is it?
• Adding in capability of naming subroutines to make your model more human-

readable

• Why use it?
• Readability

• Similar to relationship between assembly named memory locations vs. explicit

• Succinctness b/c you can reuse “code”



𝐿𝑜𝑜𝑘𝑢𝑝𝑘 and 𝐴𝑑𝑑𝑛

• What does the subscript mean?
• What the size of the input it

• 𝑘 is the number of bits in the index (total of 2𝑘 + 𝑘)

• 𝑛 is the number of bits in each number we’re adding together (total of 2𝑛)



𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑘: 0,1
2𝑘 → {0,1}

• Using only NAND gates, write a function to compare two-bit integers
• 𝐶𝑜𝑚𝑝𝑎𝑟𝑒2 𝑎1, 𝑎0, 𝑏1, 𝑏0 = 1 if integer 𝑎1𝑎0 > integer 𝑏1𝑏0
• 𝐶𝑜𝑚𝑝𝑎𝑟𝑒2 1100 = 1

• 𝐶𝑜𝑚𝑝𝑎𝑟𝑒2 0101 = 0

• 𝐶𝑜𝑚𝑝𝑎𝑟𝑒1 𝑎, 𝑏 =



𝐶𝑜𝑚𝑝𝑎𝑟𝑒1 𝑎, 𝑏 = ¬ 𝑎 → 𝑏 ≡ 𝑎 ∧ ¬𝑏

𝐶𝑜𝑚𝑝𝑎𝑟𝑒1 𝑎, 𝑏 :

notb= NAND(b,b)

anb = NAND(a,notb)

notanb = NAND(anb, anb)



𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑘 𝑠𝑎, 𝑠𝑏 :

eq0 = NOT(XOR(𝑠𝑎 0 , 𝑠𝑏 0 )) # 3 gates

compkm1 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑘−1(𝑠𝑎 1: , 𝑠𝑏 1: ) # 𝐶𝑘−1
comp1 = 𝐶𝑜𝑚𝑝𝑎𝑟𝑒1(𝑆𝑎 0 , 𝑆𝑏 0 ) # 3

return IF(eq0, compkm1, comp1) # 4 gates

If a more significant bit differs between the two, then we know the answer, 
otherwise we need to check more bits

𝐶𝑘 = 𝐶𝑘−1 + 10
𝐶1 = 3



• 𝑘 = 1
• 3 gates

• 𝑘 = 2
• 13 gates

• 𝑘 = 3
• 23 gates

• 𝑘 = 4
• 33 gates

• …
• In general for 𝑘

• 3 + 10(𝑘 − 1)



Induction to show: 𝐶𝑘 ≤ 3 + 10(𝑘 − 1)

• Base case: 𝑘 = 1
• 𝐶1 ≤ 3 + 10(1 − 1)

• 3 ≤ 3

• Inductive step: to show if 𝐶𝑘 ≤ 3 + 10(𝑘 − 1) then 𝐶𝑘+1 ≤ 3 + 10((𝑘 + 1) − 1)
𝐶𝑘+1 = 𝐶𝑘 + 10

𝐶𝑘 ≤ 3 + 10(𝑘 − 1)

𝐶𝑘+1 ≤ 3 + 10 𝑘 − 1 + 10

𝐶𝑘+1 ≤ 3 + 10𝑘

𝐶𝑘+1 ≤ 3 + 10((𝑘 + 1) − 1)


