CS3102

September 6

Questions

Recall: "Carnot Engine" of computing

- What "type" is the input?
 - String (bit strings)
- What "type" is the output?
 - String
- What have we put in the black box so far?
 - Circuits of logic gates
 - Python/Java/C++
 - X8086
 - NAND-CIRC

What goes in here?

What do we compute on?

- Always strings! (that represent other things)
 - Images
 - DNA
 - Web pages
 - Temperature
- To compute on non-string things, we need a *representation scheme*
 - Function $E: U \rightarrow \{0,1\}^*$
 - *E* should be one-to-one

Model of Computing

- To define a model of computing, we need:
 - A way to give it input
 - Pre-defining the values of the "input" gates
 - A way to get output out of it
 - Pre-defined some gates as "output" gates, and when execution stopped, their values defined the output
 - How do we go from input to output?
 - Execution model: deterministic (non-random)
 - For any gate where all of its incoming wires had defined values, its value becomes the result of applying a particular operation to the values its incoming wires
 - Representation
 - Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT; NAND:NAND/INPUT/OUTPUT)

Showing AON=NAND

- Anything I can do with AON I can also do with NAND
 - Vice-versa
- Two models of computing are "equivalent" if every function you can implement with one of them you can also implement with the other
- Find a way of converting instances of one model into instances of the other such that we compute the same function
- To go from AON to NAND:
 - Do AND with NANDs
 - Do OR with NANDs
 - NOT with NANDs
- To go from NAND to AON:
 - Do NAND with ANDs/Ors/NOTs

Syntactic Sugar

- What is it?
 - Adding in capability of naming subroutines to make your model more humanreadable
- Why use it?
 - Readability
 - Similar to relationship between assembly named memory locations vs. explicit
 - Succinctness b/c you can reuse "code"

$Lookup_k$ and Add_n

- What does the subscript mean?
 - What the size of the input it
 - k is the number of bits in the index (total of $2^k + k$)
 - n is the number of bits in each number we're adding together (total of 2n)

$$Compare_k: \{0,1\}^{2k} \rightarrow \{0,1\}$$

- Using only NAND gates, write a function to compare two-bit integers
 - $Compare_2(a_1, a_0, b_1, b_0) = 1$ if integer $a_1a_0 > \text{integer } b_1b_0$
 - $Compare_2(1100) = 1$
 - $Compare_2(0101) = 0$
- $Compare_1(a, b) =$

$$Compare_1(a,b) = \neg(a \to b) \equiv a \land \neg b$$

Compare₁(a, b): notb= NAND(b,b) anb = NAND(a,notb) notanb = NAND(anb, anb)

$$\begin{aligned} Compare_k(s_a, s_b): \\ eq0 = NOT(XOR(s_a[0], s_b[0])) \ \# \ 3 \ gates \\ compkm1 = Compare_{k-1}(s_a[1:], s_b[1:]) \ \# \ C_{k-1} \\ comp1 = Compare_1(S_a[0], S_b[0]) \ \# \ 3 \\ return \ IF(eq0, compkm1, comp1) \ \# \ 4 \ gates \end{aligned}$$

If a more significant bit differs between the two, then we know the answer, otherwise we need to check more bits

$$C_k = C_{k-1} + 10$$
$$C_1 = 3$$

- 3 gates
- *k* = 2
 - 13 gates
- *k* = 3
 - 23 gates
- *k* = 4
 - 33 gates
- ...
- In general for k
 - 3 + 10(k 1)

Induction to show: $C_k \leq 3 + 10(k-1)$

- Base case: k = 1
 - $C_1 \le 3 + 10(1-1)$
 - 3 ≤ 3
- Inductive step: to show if $C_k \le 3 + 10(k-1)$ then $C_{k+1} \le 3 + 10((k+1)-1)$ $C_{k+1} = C_k + 10$

$$C_k \le 3 + 10(k - 1)$$

$$C_{k+1} \le 3 + 10(k - 1) + 10$$

$$C_{k+1} \le 3 + 10k$$

$$C_{k+1} \le 3 + 10((k + 1) - 1)$$