CS3102
September 6

Questions

Recall: "Carnot Engine" of computing

- What "type" is the input?
- String (bit strings)
- What "type" is the output?
- String
- What have we put in the black box so far?
- Circuits of logic gates
- Python/Java/C++
- X8086
- NAND-CIRC

What goes in here?

What do we compute on?

- Always strings! (that represent other things)
- Images
- DNA
- Web pages
- Temperature
- To compute on non-string things, we need a representation scheme
- Function $E: U \rightarrow\{0,1\}^{*}$
- E should be one-to-one

Model of Computing

- To define a model of computing, we need:
- A way to give it input
- Pre-defining the values of the "input" gates
- A way to get output out of it
- Pre-defined some gates as "output" gates, and when execution stopped, their values defined the output
- How do we go from input to output?
- Execution model: deterministic (non-random)
- For any gate where all of its incoming wires had defined values, its value becomes the result of applying a particular operation to the values its incoming wires
- Representation
- Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT; NAND:NAND/INPUT/OUTPUT)

Showing AON=NAND

- Anything I can do with AON I can also do with NAND
- Vice-versa
- Two models of computing are "equivalent" if every function you can implement with one of them you can also implement with the other
- Find a way of converting instances of one model into instances of the other such that we compute the same function
- To go from AON to NAND:
- Do AND with NANDs
- Do OR with NANDs
- NOT with NANDs
- To go from NAND to AON:
- Do NAND with ANDs/Ors/NOTs

Syntactic Sugar

- What is it?

- Adding in capability of naming subroutines to make your model more humanreadable
- Why use it?
- Readability
- Similar to relationship between assembly named memory locations vs. explicit - Succinctness b/c you can reuse "code"

Lookup $_{k}$ and Add $_{n}$

- What does the subscript mean?
- What the size of the input it

- k is the number of bits in the index (total of $2^{k}+k$)
- n is the number of bits in each number we're adding together (total of $2 n$)

Compare $_{k}:\{0,1\}^{2 k} \rightarrow\{0,1\}$

- Using only NAND gates, write a function to compare two-bit integers
- Compare $_{2}\left(a_{1}, a_{0}, b_{1}, b_{0}\right)=1$ if integer $a_{1} a_{0}>$ integer $b_{1} b_{0}$
- $\operatorname{Compare}_{2}(1100)=1$
- Compare $_{2}(0101)=0$
- Compare $_{1}(a, b)=$

$$
\text { Compare }_{1}(a, b)=\neg(a \rightarrow b) \equiv a \wedge \neg b
$$

Compare $_{1}(a, b)$: notb $=$ NAND (b, b) anb $=$ NAND (a, notb) notanb $=$ NAND (anb, anb)

$$
\begin{aligned}
& \operatorname{Compare}_{k}\left(s_{a}, s_{b}\right): \\
& \quad \text { eq0 }=\operatorname{NOT}\left(\operatorname{XOR}\left(s_{a}[0], s_{b}[0]\right)\right) \# 3 \text { gates } \\
& \quad \operatorname{compkm} 1=\operatorname{Compare}_{k-1}\left(s_{a}[1:], s_{b}[1:]\right) \# C_{k-1} \\
& \quad \operatorname{comp1}=\operatorname{Compare}_{1}\left(S_{a}[0], S_{b}[0]\right) \# 3 \\
& \quad \text { return IF(eq0, compkm1, comp1) \# } 4 \text { gates }
\end{aligned}
$$

If a more significant bit differs between the two, then we know the answer, otherwise we need to check more bits

$$
\begin{gathered}
C_{k}=C_{k-1}+10 \\
C_{1}=3
\end{gathered}
$$

- $k=1$
- 3 gates
- $k=2$
- 13 gates
- $k=3$
- 23 gates
- $k=4$
- 33 gates
- ...
- In general for k
- $3+10(k-1)$

Induction to show: $C_{k} \leq 3+10(k-1)$

- Base case: $k=1$
- $C_{1} \leq 3+10(1-1)$
- $3 \leq 3$
- Inductive step: to show if $C_{k} \leq 3+10(k-1)$ then $C_{k+1} \leq 3+10((k+1)-1)$

$$
C_{k+1}=C_{k}+10
$$

$$
\begin{aligned}
& C_{k} \leq 3+10(k-1) \\
& C_{k+1} \leq 3+10(k-1)+10 \\
& C_{k+1} \leq 3+10 k \\
& C_{k+1} \leq 3+10((k+1)-1)
\end{aligned}
$$

