CS3102

September 6

Questions

Recall: “Carnot Engine” of computing

* What “type” is the input?
 String (bit strings)

 What “type” is the output?
e String

* What have we put in the black box so far?
Circuits of logic gates

* Python/Java/C++ Computing
* X8086 Machine
e NAND-CIRC / Program /

Algorithm

What goes in here?

What do we compute on?

* Always strings! (that represent other things)
* Images
* DNA
* Web pages
* Temperature

* To compute on non-string things, we need a representation scheme
* Function E: U - {0,1}"

e E should be one-to-one

Model of Computing

* To define a model of computing, we need:
* A way to give it input
* Pre-defining the values of the “input” gates

* A way to get output out of it

* Pre-defined some gates as “output” gates, and when execution stopped, their values
defined the output

 How do we go from input to output?
e Execution model: deterministic (non-random)

* For any gate where all of its incoming wires had defined values, its value becomes the
result of applying a particular operation to the values its incoming wires

* Representation

* Wires, gates, gates have labels (AON: AND/OR/NOT/INPUT/OUTPUT;
NAND:NAND/INPUT/OUTPUT)

Showing AON=NAND

* Anything | can do with AON | can also do with NAND

* \ice-versa

* Two models of computing are “equivalent” if every function you can
implement with one of them you can also implement with the other

* Find a way of convertin%instances of one model into instances of the other
such that we compute the same function

* To go from AON to NAND:
Do AND with NANDs
Do OR with NANDs
* NOT with NANDs

* To go from NAND to AON:
Do NAND with ANDs/Ors/NOTs

Syntactic Sugar

* What is it?
* Adding in capability of naming subroutines to make your model more human-
readable
* Why use it?
* Readability

* Similar to relationship between assembly named memory locations vs. explicit
 Succinctness b/c you can reuse “code”

Lookup, and Add,,

SV S
* What does the subscript mean?

* What the size of the input it ; V\&EY \‘/\/\/

e k is the number of bits in the index (total of 2% + k)
* nis the number of bits in each number we’re adding together (total of 2n)

Compare,:{0,1}** - {0,1}

e Using only NAND gates, write a function to compare two-bit integers
« Compare,(aq, ay, by, by) = 1if integer a,a, > integer by b,

 Compare,(1100) =1
C (/&L/ é)

 Compare,(0101) =0

 Compare,(a,b) = A
O
S

~—

-
O
|

J

J
C
(
|

ol

Compare,;(a,b) = =(a > b) =a A -b

Compare,(a,b):
notb= NAND(b,b)
anb = NAND(a,notb)
notanb = NAND(anb, anb)

Compare;(sy, Sp):
eq0 = NOT(XOR(s,[0], s;[0])) # 3 gates
compkm1 = Comparey,_,(s,[1:],s,[1:]) # Ci_4
compl = Compare,(5,[0],S,[0]) #3
return IF(eq0, compkm1, comp1l) # 4 gates

If a more significant bit differs between the two, then we know the answer,
otherwise we need to check more bits

Ck — Ck—l +10
C1:3

ck=1

* 3 gates
e k=2

* 13 gates
e k=3

* 23 gates
e k=4

* 33 gates

* In general for k
« 3+10(k —1)

Induction to show: €, < 3+ 10(k — 1)

e Basecase: k=1
+ C;<3+10(1-1)
e 3<3

* Inductive step: toshow if C;, <3+ 10(k—1)thenCy;1 <3+ 10((k+1)—1)
Cri1=Cr +10

C <3+ 10(k —1)

Cest <3+10(k—1)+ 10
Covs <3+ 10k

Cosy1 <3+10((k+1)—1)

