
University of Virginia cs3102: Theory of Computation 16 September 2020

Week 4: Eval

Authors: TODO: Cohort Name (names of all who contributed)

Collaborators and Resources: TODO: Replace with any additional collaborators and
non-course resources you used

This is a template to help with your write-up for Week 3. The actual problem you will write up will be
selected by your Cohort Leader at the Assessed Cohort Meeting.

Clone the Problem Set 4 Template Repository

See the Week 1 template for directions on Getting Started with LaTeX. Similarly to Week 1, one member of
your cohort should create a copy of the Problem Set 4 repository, by following these steps (we recommend
doing this together, with the one creating the repository sharing her screen for everyone to follow along):

1. Download the Problem Set 4 template from: https://uvatoc.github.io/docs/ps4template.zip

2. In Overleaf, click on Create First Project or New Project in Overleaf and select Upload Project from
the menu.

3. Click Select a .zip file and then select the ps4template.zip file you downloaded in step 1.

4. Share the repository with your cohortmates by clicking the "Share" button at the top right of the
overleaf window, and entering your cohortmates email addresses in the sharing form.

Click on ps4.tex to see the LaTeX source for this file, which is the file you will modify to prepare your
solution. The first thing you should do in ps4.tex is set up your cohort name as the author of the
submission by replacing the line, \submitter{TODO: your name}, with your the name of your cohort (e.g.,
\submitter{Cohort Hopper (Ada Lovelace, Don Knuth)}). For the list of cohort members, this should
usually be everyone in your cohort, but if someone did not contribute during the week, they should not be
included in your submission list (and should have informed us about their absence separately).

Before submitting your week4.pdf file, also remember to:

– List your collaborators and resources, replacing the TODO in \collaborators{TODO: replace ...}
with your collaborators and resources. You do not need to include

– Replace the second line in ps4.tex, \usepackage{uvatoc} with \usepackage[response]{uvatoc} so
the directions do not appear in your final PDF. You can do this by using the LaTeX comment token, %. The
rest of the line after a % is treated as a comment. You’ll notice after you to this, when you Recompile the
document, most of it will disappear (everything in \directions is left out, so only your solution will appear
in the submitted document).

https://uvatoc.github.io/docs/ps1template.pdf
https://uvatoc.github.io/docs/ps4template.zip


cs3102 Fall 2020 2 Week 4: Eval

Problem 1 Finite vs. Infinite functions

To fully appreciate this week’s content, it is critical that you understand the difference between finite and
unbounded functions. TCS Section 1.7 defines a finite function to have a fixed-sized input and an infinite
function to have unbounded input.

Check your understanding of the difference between these two by answering (with proof) the following
questions:

– What is the cardinality of the set of all finite functions of the form {0, 1}n → {0, 1}?

– What is the cardinality of the set of all finite functions with binary inputs?

– What is the cardinality of the set of all infinite functions with binary inputs?

Problem 6 Equal to Constant Function (TCS exercise 5.3 and Defining EVAL video)

For every k ∈ N show that there exists a NAND-CIRC straightline program of no more than c · k lines (where
c is a constant) which computes EQUALSx′ : {0, 1}k → {0, 1} where EQUALSx′(x) = 1 if and only if x = x′.

Problem 7 Domino Computers

The 10,000 Domino Computer (bonus video) attempted to add two 4-bit numbers. Last week you were
tasked with building a circuit of your own for addition as a programming problem. Exercise 4.5 of the
textbook (which we’re not asking you to complete at this time) concludes that you can make a NAND circuit
to add together two n-bit numbers using no more than 9n gates.

If we assume the Domino Computer used only NAND gates, how many dominoes are required to implement
each gate on average? How many dominoes would be required for LOOKUP_8?

Use Theorem 3.12 from TCS to give a lower bound on the number of dominoes that would be required if
this domino computer for LOOKUP_8 was re-implemented with AON gates (assuming each gate requires the
same number of dominoes as NAND does).

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://introtcs.org/public/lec_00_1_math_background.html
https://youtu.be/5RbgIcs0bEw
https://www.youtube.com/watch?v=OpLU__bhu2w
https://introtcs.org/public/lec_03_computation.html
https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

	Clone the Problem Set 4 Template Repository

