
University of Virginia cs3102: Theory of Computation 9 September 2020

Week 3: Sweet

The purpose of this assignment is to develop your understanding of finite computation, focusing on the
material in Chapter 3 of the textbook and what we covered in the Week 3 Videos.

We have also included some problems to provide more practice with proof techniques including induc-
tion, since it is apparent from Problem Set 1 that most students will benefit from these.

Collaboration Policy: You should work on the problems yourself, before discussing with
others, and with your cohorts are your cohort meeting. By the Assessed Cohort Meeting,
you and all of your cohortmates, should be prepared to present and discuss solutions
to all of the assigned problems (including the programming problems). In addition to
discussing with your cohortmates, you may discuss the problems with anyone you want,
and use any resources you want except for any materials from previous offerings of this
course, which are not permitted.

Problem 1 Cycles

Why can’t our AON-circuits have cycles in them (e.g. gate A connects to gate B which connects to gate C
which connects to gate A)? Specifically, what about our Boolean circuits definition or execution rules
would break?

Problem 2 Maximum number of Inputs (Induction Practice)

The depth of a circuit is the length of the longest path (in the number of gates) from the an input to an
output in the circuit. Prove using induction that the maximum number of inputs for a Boolean circuit (as
defined by Definition 3.5 in the book) that produces one output that depends on all of its inputs with
depth d is 2d for all d ≥ 0. (Note: there are ways to prove this without using induction, but the purpose of
this problem is to provide induction practice, so only solutions that are well constructed proofs using the
induction principle will be worth full credit.)

Problem 3 Why LOOKUP_k?

When discussing LOOKUP, we had to parameterize the function. That is, we did not just talk about
LOOKUP, but defined LOOKUP_k (subscript k), where k referred to the number of bits in the index. This
means that LOOKUP_1 is a different function from LOOKUP_2, which is different from LOOKUP_3, etc.

Why did we need different versions of LOOKUP for different-sized arrays/indexes? Why couldn’t we just
have one LOOKUP which took in k as a parameter?

https://uvatoc.github.io/docs/tcs-chapter3.pdf
https://uvatoc.github.io/week3


cs3102 Fall 2020 2 Week 3: Sweet

Problem 4 Fixing Brunelle’s Mistakes

In the lecture video Cost of LOOKUP, Professor Brunelle set up a proof by induction that LOOKUP_k
requires≤ 4 · 2k NAND gates to compute. His proof did not actually work, though, and his calls for help in
the video were sadly unanswered.

Let’s help him out. Write your own inductive proof to show that LOOKUP_k requires ≤ 4 · 2k NAND gates.
(Hint: It may be easier to show that the number of gates required is upper-bounded by some other
function that is itself upper-bounded by 4 · 2k).

Problem 5 Straightline IF vs Python if

When we added the syntactic sugar IF to the AON or NAND Straightline programming language, we
had to do a peculiar thing. With a Python if, code is either executed or not depending on the Boolean
condition. When using IF within AON/NAND Straightline, the True “branch” and False “branch” were
both always executed, and IF merely selected one of the two values to assign to a variable.

Why can’t we “skip” code in straightline programs? Why doesn’t Python execute if in a way similar to
straightline (a helpful answer would include an example of a use of if in Python that would behave
differently with our IF definition)? Why is the IF function we defined okay for straightline programs but
not for Python?

Problem 6 Universality Checkup

Prove that {MAJ, 0, 1} is not a universal gate set (where MAJ is the majority of three inputs function, and 0
and 1 are constants).

Problem 7 How universal is “Universal”?

We introduced in lecture that some sets of gates are “Universal”. For example, the set {AND, OR, NOT} is
universal, as is the set {NAND}. We’ve also proven that no finite model of computing can implement all
Boolean functions. If {AND, OR, NOT} being Universal doesn’t mean it can be used to compute any function,
what precisely do we mean by “Universal”?

Problem 8 Full Adders (based on Exercise 4.5)

First, complete the programming problems. They are necessary in helping you to address the written
problem below.

Programming Problems

See adders.py for the programming problems.

Written Problem

Show that for every n there is a NAND-CIRC program to compute ADDn with at most 9n lines where
ADDn : {0, 1}2n → {0, 1}n is the function that outputs the sum of two input n-bit numbers (where all
inputs and outputs are represented in binary).

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://www.youtube.com/watch?time_continue=188&v=ZRFK2_Ll9b0&feature=emb_logo
https://uvatoc.github.io/ps/adders.py
https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans


cs3102 Fall 2020 3 Week 3: Sweet

You may find the other parts of Exercise 4.5 in the book helpful, but it is not necessary to solve this
problem using those steps.

Starred Problems: The remaining problems on this problem set are “starred” challenge
problems. When a problem is marked with a ?, it means we think this problem is challen-
ging enough that students are not expected to be able to solve it. We still hope everyone
will attempt these problems and learn from trying to solve them, but you shouldn’t get
overly frustrated if you are not able to solve a ? problem. Unlike the non-starred problems,
you will not be “cold-called” to present a solution to a ?-level problem at an Assessed
Cohort Meeting. Instead, if there is time in the meeting, students will have an opportunity
to volunteer to discuss the problem (and receive potential bonus points for outstanding
solutions).

Problem 9 (?) Perceptron

A perceptron is a single layer neural network (Section 3.4.5) that can be modeled by the following function:

f(x0, x1, . . . , xk−1) = σ(
∑

i

wixi)

where σ : R→ R is an activation function. For this question, you may assume the activation function is a
rectified linear unit (ReLU), commonly used in deep learning:

ReLU (x) = max(0, x)

Prove that there is no way to define XOR using a perceptron. That is, show that there is no way to
assign the values of wi such that f(x0, x1) = ReLU (w0x0 + w1x1) implements the XOR function. You can
interpret the output of f ias a Boolean value with values below 0.5 interpreted as False and values≥ 0.5
interpreted as True.

Historical and resource policy note: The proof that a perceptron cannot compute XOR is of some
historical importance, and it doesn’t take much cleverness to find proofs of this (don’t click on this link
until after attempting this problem on your own). You should not search for solutions to this problem
since the goal of it is for you to think about this yourself and come up with a proof. The historical
significance of this problem, which is often overblown to the point where some refer to it as the “XOR
affair”, is that it has been attributed by some as one of the reasons why research in neural networks
mostly ceased in the 1980s, except for a few die-hard believers who kept working on it, eventually leading
to the explosion of “deep learning” over the past decade, and being awarded the Turing Award in 2018.

Problem 10 (??) Prove that a two-layer perceptron is universal.

This will require a bit of creativity and thinking carefully about our definitions. As in Problems 4 and 5,
universal means that a Boolean circuit where the gates are all two-layer perceptrons can compute the
same function as any Boolean circuit.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://duckduckgo.com/?q=perceptron+XOR
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://www.nytimes.com/2019/03/27/technology/turing-award-ai.html
https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

