
University of Virginia cs3120: Discrete Mathematics and Theory 2 3 May 2023

Practice Final Exam — Comments
Here we provide some solutions and discussion on selected problems on the practice final exam (including for all the
problems for which students asked questions).

True, False, or Unknown

1. For each of the following, circle one of the choices to indicate whether the statement is known to be True, is known
to be False, or Unknown if its validity depends on something that is either currently unknown or not specified in the
question.

Then, write a short justification to support your answer. When your answer is Unknown, your answer should make it
clear what unknown the validity of the statement depends on (for example, that it is equivalent to a statement whose
truth is currently unknown to anyone).

(a) The function, XOR : {0, 1}∗ → {0, 1}, which outputs the logical exclusive or of all the input bits, is in the
complexity class P.

Circle one:

True False Unknown

Justification (≤ 5 words):

We saw a finite automaton that implements the infinite XOR function, and any finite automaton can be simulated in
polynomial time. Simulating each step involves a lookup in a table which is constant time since the size of the table
does not depend on the size of the input, only on the size of the transition function, and other constant time operations.
The number of steps is linear in the size of the input, since each input symbol is processed once. (Admittedly, this is
much more than requested five words. A good five-word explanation would be, “DFA for XOR means ∈ P”.)

(b) The function, XOR (from the previous question), is in the complexity class NP.

Circle one:

True False Unknown

Justification (3 symbols):

P ⊆ NP. (More completely, since in parth (a) we proved that XOR ∈ P, and we know P ⊆ NP.)



cs3120 Spring 2023 2 Practice Final Exam — Comments

(c) The function, XOR (from the previous question), is in the complexity class NP-Complete.

Circle one:

True False Unknown

Justification (≤ 15 words):

The answer depends on whether or not P = NP. (This was discussed in the review class.)

(d) If a function A in NP has an exponential lower bound (e.g., requires Ω(2n) time to compute), then no function in
NP-Complete can be computed in polynomial time.

Circle one:

True False Unknown

Justification (≤ 3 sentences):

If we prove that some A ∈ NP requires exponential time to compute, this means that P ̸= NP and that no function in
NP-Complete can be computed in polynomial time. (This was discussed in more detail in the review class.)

(e) If a function Q : {0, 1}∗ → {0, 1} is computable, the function Q is computable where ∀x ∈ {0, 1}∗ : Q(x) =
NOT(Q(x)).

Circle one:

True False Unknown

Justification (≤ 3 sentences):

Since Q is computable, there is some TM TQ that computes Q. We can construct a machine TNQ that computes Q by
flipping the final and non-final states of TQ.

Proving Uncomputability

2. In this question, your goal is to show that the function CELL15 defined below is uncomputable.

Input: A string w that describes a Turing Machine.

Output: 1 if the machine described by w would write a 1 on the fifteenth cell on its tape when executed
on a tape that is initially all blank. Otherwise, 0.

That is, a machine which computes CELL15 outputs 1 when the input describes a Turing Machine which, when run
on a blank tape, at some points writes the symbol 1 to the tape cell at index 15 (counting from the start-of-tape symbol
at index 0).

(a) Which strategy would show that CELL15 is uncomputable? (Circle one, no explication needed.)

Use a machine that computes
CELL15 to compute HALTS .

Use a machine that computes HALTS to com-
pute CELL15.

(b) Employ the strategy you chose in the previous question to show that CELL15 is uncomputable.

This was discussed in the review class.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 3 Practice Final Exam — Comments

Countable, Uncountable, Unknown

3. For each set described below, indicate whether its cardinality is Countable, Uncountable, or Unknown (not
determined by the question if it is countable or uncountable). Circle one option and give a proof of your answer.

(a) The set of all grades that students will get on the final exam.

Countable Uncountable Unknown

Proof: It is finite, and all finite sets are countable.

(b) The set of NAND circuits that compute XOR.

Countable Uncountable Unknown

Proof: This is a subset of the set of all NAND circuits. We set of all NAND circuits is countable. We could prove this
by showing a way to map all NAND circuits to a unique natural number.

(c) The set of of all uncomputable languages.

Countable Uncountable Unknown

Proof: (Hint) Think of the languages as subsets of the natural numbers, or as functions from {0, 1}∗ → {0, 1}.

Always, Sometimes, Never

4. For a function f : {0, 1}3120 → {0, 1} that can be implemented by a NAND circuit with s gates, which of the
statements that follow would be Always True, Possibly True (meaning there are some functions f for which the
statement is true and others for which is it false), or Never True (circle one option). Give a brief statement to justify
your answer.

(a) f is computable

Always True Possibly True Never True

Justification (≤ 5 words): It is finite. (Discussed in review class.)

(b) f ∈ NP

Always True Possibly True Never True

Justification (≤ 5 words): (Hint) P ⊆ NP, but correct answer depends on how partial functions are interpreted since P
is a set of {0, 1}∗ → {0, 1} functions so (strictly) does not include any functions of the type {0, 1}3120 → {0, 1}.
(Discussed in review class.)

(c) f can be implemented using 3102 NAND gates.

Always True Possibly True Never True

Justification (≤ 3 sentences): Depends on s (and sensible functions with 3102 input bits cannot be implemented with
3012 NAND gates since most input bits cannot affect the output).

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 4 Practice Final Exam — Comments

Induction

5. Define the function ALTn : {0, 1}2n → {0, 1} such that for a string w ∈ {0, 1}2n we say that ALTn(w) = 1
provided w ∈ (01)∗. We could compute ALT1 using the following straightline program:

def ALT1(x1,x2):
diff = XOR(x1,x2)
return AND(x2, diff)

We could then implement ALTn as follows:

def ALTn(x1,x2,...,x2n):
diff = XOR(x1,x2)
first = AND(x2,diff)
rest = ALTn(x3,...,x2n)
return AND(first, rest)

Suppose we have similarly implemented ALTn−1, ALTn−2, etc., (and all other dependent subroutines).

Show that the number of NAND gates needed to represent a circuit for ALTn is no more than 10n gates (hint: XOR
requires 4 NAND gates and AND requires 3 NAND gates).

Comments. We won’t provide a written solution to this now (but might if people ask about it), but you should all be
able to construct a solid proof by induction. Four main things to remember:

1. First, state what you are proving clearly. (This is true for all proofs!)

2. Then, state the induction hypothesis, P (n) where n is an input natural number, and your goal is to prove
∀n ∈ N : P (n) to prove the theorem from the first step. (For some problems you will have to think carefully if
you need ∀n ∈ N or some subset of N or some other countable set.

3. Prove the base case: P (0).

4. Prove the inductive case: P (n) =⇒ P (n + 1). You should think carefully about which values n this should
apply for. Also, in some cases it may be easier to prove P (n − 1) =⇒ P (n).

Complexity Classes

6. For an arbitrary given function A, for each of the complexity classes below, describe a way to prove that A belongs
to the given class.

(a) P

Hint: show an algorithm for a deterministic TM.

(b) NP

Hint: show an algorithm connected to definition of NP.

(c) NP-Hard

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 5 Practice Final Exam — Comments

Hint: this is a hardness class, unlike the first two sub-questions which are about easiness classes. To prove a problem
is hard, we usually use a reduction to show that if it could be solved we could use it to solve some other problem we
already know is hard.

(d) NP-Complete

Hint: you should understand the definition of NP-Complete. and be able to solve this using parts (b) and (c).

(e) O(n2) (where n is the length of the input to A)

Hint: show an algorithm with particular properties.

(f) Θ(1)

Hint: this is a tight bound, so need to show both "easiness" (there is an algorithm with some property) and "hardness"
(there isn’t a better one). For constant running time, though, showing "hardness" should be easy (but for most other
running times, that is the hard, and often unknown, part).

(g) Ω(n) (where n is the length of the input to A)

See hint above — Ω(n) is a hardness property, meaning we there is no algorithm that solves the problem with
asymptotic complexity that is less than linear in the input length.

7. Prove the following: If a function A in NP has an exponential lower bound (e.g. requires Ω(2n) time to compute),
then no language in NP-Complete can be computed in polynomial time.

Hints: review the definition of NP-Complete (and problem 1d).

Regular Expressions and Automata

8. For the following 4 sub-problems you will be asked to get both a regular expression and a finite state automaton for
two different languages.

(a) Draw a finite state automaton (either an NFA or DFA) for the language:

{x ∈ {0, 1}∗ | x as interpreted as a binary representation of a natural number is odd}

(note that the empty string is a binary representation of 0, which is even).

(b) Give a regular expression for the language:

{x ∈ {0, 1}∗ | x as interpreted as a binary representation of a natural number is odd}

(note that the empty string is a binary representation of 0, which is even).

(c) Draw a finite state automaton (either an NFA or DFA) for the language: XOR : {0, 1}∗ → {0, 1}. In other words,
the language {x ∈ {0, 1}∗ | XOR(x) = 1}.

(d) Give a regular expression for the language: XOR : {0, 1}∗ → {0, 1}. In other words, the language {x ∈
{0, 1}∗ | XOR(x) = 1}.

Comments. Not providing solutions for these, but you should be able to easily check if your answers are correct by
simulating it on representative inputs.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans


cs3120 Spring 2023 6 Practice Final Exam — Comments

Models

9. List the essential things that are required to define a model of computing.

Comments. There are two different ways you could answer this question. One is answering what a mathematical
model (in general) must do: (1) provide a description of all the objects it covers, and (2) provide a way of mapping
those objects to a meaning. For computing models, (1) means describing a set of machines or circuits or some other
computing representation using a formal notation. (2) means showing how the computing model executes to produce
(or not produce) an output for a given input.

A second, and more straightforward, interpretation of the question is about what components are needed for any
sensible computing model:

1. A way to describe the input.

2. A way to interpret the output.

3. A way to do processing.

4. (Not completely essential, but hard to have interesting computing models without it:) memory (some way to
keep track of things are processing is done).

For all of the computing models we have seen in class (as well as new ones that might be presented to you), you
should be able to identify these four components.

10. Describe how to show that two models of computing are equivalent.

Comments. Should consider first what “equivalent” means. Usually, we mean equivalent in power, ignoring differences
in cost, expressiveness, smell, color, taste, etc.

Two models are equivalent if the set of functions they can compute are equivalent. To complete the answer, explain
how to show two sets are equivalent (A ⊆ B and B ⊆ A =⇒ A ≡ B).

11. A Turing Machine’s configuration contains all the information needed to describe the current status of its
computation (i.e., if I paused my computation then wrote the configuration down, I could resume the computation
using what I had written). List all the necessary components of a Turing Machine’s configuration.

Comments. The tape contents (from the left to the last non-blank cell) (Z), the current state of the FSM (s), and the
current tape location (i).

Asymptotics

12. Let f(n) = 8n4.5 and g(n) = 5n5, which of the following are true? Support your answer to each part with a
convincing argument.

(a) f ∈ O(g)

True

(b) f ∈ Ω(g)

False

(c) f ∈ Θ(g)

False

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Mohammad Mahmoody and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~mm7ux/
https://www.cs.virginia.edu/evans

