Cardinality of *pow(S*)

Base case: P(0): $pow(S) = \{\emptyset\}. | pow(S)| = 1 = 2^0 = 2^{|S|}.$

Inductive case: $\forall m \in \mathbb{N}$. $P(m) \Rightarrow P(m + 1)$.

 For all sets *T* where |*T*| = *m* + 1, ∃*S* where |*S*| = *m*, *x* ∉ *S* such that *T* = *S* ∪ { *x* }
P(*m*) ⇒ |*pow*(*S*)| = 2^{|S|}.
Since *pow*(*T*) includes all elements of

pow(S) as well as those elements with { x } inserted, this means

$$|pow(T)| = 2 \cdot |pow(S)|$$

= 2 \cdot 2^{|S|} = 2^{|S|+1} = 2^{|T|}.

QED: For all finite sets *S*, $pow(S) = 2^{|S|}$.