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Concerns about computational problems requiring brute-force or exhaustive 
search methods have gained particular attention in recent years because of the 
widespread research on the “P = NP?” question. The Russian word for “brute- 
force search” is “perebor. ” It has been an active research area in the Soviet 
Union for several decades. Disputes about approaches to perebor had a 
certain influence on the development, and developers, of complexity theory in 
the Soviet Union. This paper is a personal account of some events, ideas, and 
academic controversies that surrounded this topic and to which the author 
was a witness and-to some extent-a participant. It covers a period that 
started in the 1950s and culminated with the discovery and investigation of 
nondeterministic polynomial (NP)-complete problems independently by S. 
Cook and R. Karp in the United States and L. Levin in the Soviet Union. 

Categories and Subject Descriptors: 1.2.8 [Artificial Intelligence]-graph and 
tree search strategies; K. 2 [History of Computing]-people, software 

General Terms: Algorithms, Theory, Verification 
Additional Key Words and Phrases: brute-force search algorithms, perebor 

Introduction 

A perebor algorithm, or perebor for short, is Russian 
for what is called in English a “brute-force” or “ex- 
haustive” search method. Other combinations of 
words also occur in translations from Russian, such 
as “successive trials,” “sequential searching,” and 
“thorough searching.” To keep the historical flavor, I 
prefer to preserve in this paper the original term 
perebor and use such expressions as ‘perebor prob- 
lems” (problems that are solvable by perebor), “im- 
possibility of eliminating perebor,” etc. 

Example. Consider SAT, the satisfiability problem 
for formulas of the propositional logic. (1) Existential 
uersion: Given an arbitrary formula A(X1, . . . , X,), 
determine whether there exists an n-tuple of truth 
values that satisfies A. (2) Constructive uersion: In the 
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case of an affirmative answer to (l), an n-tuple should 
be produced. 

The obvious perebor algorithm that solves both the 
existential and constructive versions of the problem 
considers all the n-tuples of truth values in some order 
(say, lexicographical order). The first time an n-tuple 
that satisfies A is discovered, the algorithm stops and 
delivers the right result; of course, this could happen 
in an early stage of the process. Otherwise, after 
unsuccessfully considering all the 2” possible n-tuples, 
the negative answer is produced. Clearly, a high price 
is to be paid, in general, for the conceptual simplic- 
ity-even triviality-of theperebor algorithm, because 
the number of cases to be tried grows exponentially 
with respect to the number n of propositional varia- 
bles. There are many other natural problems, mainly 
combinatorial and logical ones, for which perebor al- 
gorithms are quite evident. Often, as for SAT, the 
problem is to decide if some property under consider- 
ation holds for arbitrary inputs of the suitable type. 
For example, in the Hamiltonian circuit problem, the 
input is graph G, and the property to be checked is 
“does G have a simple cycle that goes through all 
vertices?” Similarly, for a given family of games, the 
p‘roblem arises of determining whether an arbitrary 
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game has a winning strategy. In such cases, both the Given A(x,y) as above and a polynomial r, 
existential and constructive versions are clearly mean- 1. Existential version. For arbitrary x determine 
ingful. Formally, the first one is the decidability prob- whether there exists a y such that A( x,y) is true 
lem for some set (i.e., the task of computing a predi- and P(y) I r( P(x)). 
cate-the characteristic function of this set), whereas 2. Constructive uersion. In the case of an affirma- 
the second deals with the computation of a ‘function. tive answer, produce such a y. 

It may happen that the problem solvable by perebor It is immediately clear that SAT turns out to be an 
looks somewhat different. Nevertheless, it isoften (but NP problem up to some natural encoding of the for- 
not always) clear how to reformulate it (in some sense mulas; moreover, one can manage with the polynomial 
equivalently) to the preceding standard. Consider, for r(n) = n. It is also clear that for each NP problem a 
example, the following two problems: (1) given a graph solution is available via perebor, as it was for SAT. 
G, compute its chromatic number (i.e., the minimum Namely, for a given x0, one has to check A(xo,y) for 
number of colors needed to paint each node of the all y of length =r( P (x0)): altogether, about 2’(‘(‘0)) 
graph so that no two adjacent nodes have the same trials-a number that is exponential relative to P (x0)- 
color); (2) given a finite automaton M, minimize it each of which needs only a feasible (polynomial on 
(i.e., construct an automaton M’ that is equivalent to P(xo)) computation of A. 
M and has the minimal number of states). Here there The notation NP indicates that an affirmative an- 
is no explicit decidability problem; instead, the com- swer in the existential version, as well as the value 
putation of a total function (mapping) is required. required in the constructive version, can be certified 
Again, the solution via perebor is obvious-for exam- by a nondeterministic procedure in polynomial time 
ple, for problem 1, check all of the possible colorings as follows: first, guess a correct y and then check in 
with two colors, then with three colors, etc. polynomial time that A(x,y) is true. But note that 

Of course, for some combinatorial problems of the nothing is said about the complexity of getting a 
kinds described (e.g., for the minimization of finite negative answer! Now, as suggested by Cook and 
automata), more sophisticated algorithms have been Levin, “eliminate perebor for an NP problem” is to be 
discovered that are considerably more efficient than interpreted as “find for this problem a deterministic 
the trivial perebor. That is not the case for the other algorithm that works in polynomial time (or, in short, 
problems formulated here. Moreover, the experience a P algorithm).” So the “NP = P?” question arises: 
accumulated in this area indicates that one cannot “Does there exist for each NP problem a P algorithm?” 
expect more efficient algorithms for such problems, The conjectured answer is “No”; in solving the prob- 
because in some sense perebor must occur (perhaps lems under consideration, guessing cannot be system- 
implicitly) in any algorithm that solves them. This is atically eliminated without some essential exhausting 
the conjecture on “the impossibility of eliminating of all possible guesses. This conjecture remains open, 
perebor.” Clearly, to attack it one needs a suitable but Cook and Levin discovered the NP-complete prob- 
formalization of the intuitive ideas under considera- lems-the most plausible candidates for which no P 
tion. Since 1971-1972 there has been a broad consen- 
sus in the computer science community about such a 
formalization based on the idea of computability and 
reducibility in polynomial time. Let us recall the main 

,,, 
Boris A. Trakhtenbrot was 

points about the seminal work of S. A. Cook (1971), born in Brichevo, Moldavia 
R. M. Karp (1972), and L. Levin (1973). (then Romania, now 

Let x,y, . I . denote binary strings, P(x), P(y), . . . U.S.S.R.) in 1921. He 
their lengths, and A(x,y) a predicate that is computa- received his Ph.D. in 
ble in polynomial time with respect to P(X) + P(y), mathematical logic and the 
Note that the existence of a polynomial upper bound theory of algorithms under 
just stipulated does not depend essentially on what P. S. Novikov in 1950 at the 
computing model is assumed: Turing machines with institute of Mathematics in 
many tapes and heads, random-access machines, etc. Kiev. Until 1960 he was in teaching and research on 
Note also that formalization of the intuitive notion computability and automata theory at the Pedagogical 
“feasible computation” is widely accepted in terms of and Polytechnical Institutes of Penza. He spent 1960- 
polynomial time. Hence, the real intention is to con- 7980 at the Mathematical institute of the Siberian 
sider feasibly computable predicates A(x,y). From the Branch of the U.S.S.R. Academy of Sciences and in 
vague class of perebor problems one selects the follow- Novosibirsk University. He emigrated to Israel in 1980 
ing well-defined subclass of perebor problems, called and is professor of computer science at Tel Aviv 
nondeterministic polynomial (NP) problems. University. 

Annals of the History of Computing, Volume 6, Number 4, October 1984 l 385 



B. A. Trakhtenbrot l Perebor 

algorithm exists. By definition, an NP problem Q is machines. . . . We started reading about [them] in 
complete if and only if (iff) for each other NP problem 1962.. . . The beauty and simplicity of the concept 
R there exists a mapping of binary strings f such that impressed us deeply. 

1. f is computable in polynomial time. For many people in the Soviet Union (including 
2. For each X, the answer for x: is affirmative in R myself), the situation was different. We started solely 

iff the answer for f(x) is affirmative in Q. with a background in mathematical logic and the 
Hence, if there exists in general some NP problem theory of algorithms before joining computer science. 

(even if artificially formulated) that is not solvable by Research in the theory of algorithms began soon after 
P algorithms, this is the case for the NP-complete World War II almost simultaneously under P. S. No- 
problems as well. By the way, SAT and a lot of other vikov (Steklov Mathematical Institute in Moscow), 
classical combinatorial problems are NP complete. So A. N. Kolmogorov (MOSCOW University), and A, A. 
if perebor is inevitable in solving any particular prob- Markov (Leningrad University). The first generation 
lem in NP, it is surely inevitable for SAT. Because of “theoretical cyberneticians” was educated in these 
the “NP = P?” question has so far resisted all attacks, traditions and was considerably influenced by them. 
a new trend of reseach has appeared dealing with the Therefore the interest in switching theory, automata, 
challenging question (Hartmanis and Hopcroft 1976): boolean functions, etc., never did mean a break with 
“Is ‘NP = P’ in general provable or refutable in the effective computability topics; the 1960s marked in 
frame of reasonable formal theories?” some sense a return to the theory of algorithms. 

The whole story belongs-if one may say so-to the Even a superficial examination of the titles in the 
post-NP period that was started by the discovery of References shows that in each of the two pre-NP 
Cook and Levin (and who knows when it will be over!). periods the impossibility of eliminating perebor was 
As to this paper, it is mainly a survey of the pre-NP explicitly proclaimed as a proved fact-the first time 
period in the Soviet Union, in particular of the events by Yablonski (1959a) and the second by Dekhtiar 
to which I was a witness and to some extent a partic- (1969). Less explicit claims of this sort could be found 
ipant. This period may be divided into two parts. in other papers as well. It is clear that at that time 

1. The first part was from the early 1950s until there were accepted formalizations of perebor prob- 
the 1960s. At that time a large spectrum of research lems and of the perebor conjecture that were different 
was started, the development included switching the- from the P = NP problem. As a matter of fact, in both 
ory, minimization of boolean functions, automata, of the pre-NP periods not only was perebor an active 
program schemes, coding, etc. Nowadays, these activ- topic of research, but it also influenced the develop- 
ities would be classified as “theoretical computer sci- ment and developers of complexity theory. Some ideas, 
ence,” but at that time we used the more general and results, and controversies of these periods will be 
vague rubric “theoretical cybernetics.” Complexity surveyed in the following sections. 
theory was essentially investigated in connection with In many respects, research in the field of complexity 
switching circuits-and so was the perebor topic. theory was performed independently in the U.S.S.R. 

2. The second part began in the 1960s when there and in the West, and sometimes the results were 
was intensive development of algorithmic complex- similar. Even in these cases, however, the primary 
ity-that is, of computational complexity and com- motivations and stimuli were sometimes different, 
plexity of finite objects by means of the theory of especially for perebor. Hence there was some diver- 
algorithms. Accordingly, some new approaches to per- gence in the chronology of events and in their influ- 
ebor appeared. ence. For example, during almost all of the pre-NP 

In his Annals paper describing related research at period, some versions of a special task related to 
the same time in the United States, Hartmanis (1981, minimization of circuits (see Tasks 4 and 5 in Sections 
pp. 44, 46) wrote: 1 and 2) were considered as the main models for which 

My thinking was very strongly influenced by Claude presumably it would be impossible to manage without 
Shannon’s work.. . [which] suggested to me that there perebor. In contrast to SAT, they were not proved to 
may be a quantitative theory of computing.. . . We must be NP complete, and most likely they are not! In this 
be able to measure the “computing work” done in sense, to persist with them might have looked like a 
computing and classify computations by their false strategy. On the other hand, these tasks helped 
complexity. to define the developing area of complexity theory, 
That is just what was happening with my colleagues and they especially called attention to problems con- 

and myself! Hartmanis goes on. cerning the role of sparse sets, oracles, immunity, 
During the late 1950s my colleagues. . . and I knew very frequency algorithms, probabilistic algorithms, etc. 
little about effective computability and Turing (Trakhtenbrot 1973a; 1975). 
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Section 1 of this paper deals with the 195Os, espe- 
cially with the first attempt by Yablonski to formalize 
and to prove the perebor conjecture and with the 
controversies stirred by this attempt. 

Section 2 is a superficial survey of the investigations 
in algorithmic complexity in the U.S.S.R. that created 
a background for new approaches to perebor or were 
influenced by it. 

Section 3 deals with some attempts to formalize the 
perebor phenomena in the framework of the theory of 
algorithmic complexity that preceded Levin’s discov- 
ery and to some extent promoted it. 

Of course, investigations on perebor do not neces- 
sarily need complexity theory, just as elaboration and 
analysis of algorithms may not involve the theory of 
algorithms. In both cases, the conceptual framework 
of the theory is relevant when negative results are 
expected-for example, the inevitability of perebor, 
the nonexistence of an algorithm, etc. On the other 
hand, when the aim is to obtain positive results, one 
can manage with direct constructions and ingenious 
tricks, for which the preceding conceptual framework 
is irrelevant. Although a review of activities of this 
sort in the U.S.S.R. is beyond the scope of this paper, 
I will make a few comments on related work. 

Tasks arising from game-playing programs and lin- 
ear programming were always a source of inspiration 
as to how one might compete with perebor. The book 
by Adelson-Velski et al. (1976) is a nice account of the 
investigations on this topic and reflects the essential 
contributions of the authors. Their main philosophy 
is formulated as follows: “One does not fear theperebor 
but rather uses it reasonably via a realistic estimation 
of the dimensions of the disaster it may imply.” In the 
frame of this general approach, effective methods (in- 
cluding heuristics) of cutting down exhaustive search 
through all a priori possibilities were created. In gen- 
eral, these methods do not always give evidence of 
correct results within feasible (say, polynomial time) 
computations; nevertheless, they are useful and inter- 
esting in both theoretical and practical aspects. 

Because of its practical importance, linear program- 
ming was investigated for a long time by representa- 
tives of many generations, who contributed to the 
elaboration and improvement of the respective algo- 
rithms. The main task happens to be an NP problem: 
Given a system of linear inequalities with integral 
coefficients, (1) Existential uersion: Decide whether it 
is solvable; (2) Constructive version: If it is solvable, 
exhibit a solution. In Karp (1972) this task is listed 
among the most important NP problems that are not 
known to be complete. 

Khachijan (1979), relying on the contributions of 
his predecessors (especially A. Nemirovski and B. 
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Yudin), formulated explicitly a polynomial-time al- 
gorithm for the linear programming task. Thus it 
turns out that in one of the most famous perebor 
problems, one can nevertheless avoid perebor. 

Section 1. The Cynbernetic Period 

From the very beginning of the 195Os, activities in 
theoretical cybernetics were energetically promoted in 
the U.S.S.R. by A. A. Liapunov and S. V. Yablonski. 
For about two decades earlier, Liapunov had closely 
collaborated with P. S. Novikov in the area of set 
theory, but now he was mainly attracted by the theory 
of programming, formal linguistics, and the mathe- 
matics of biology. Yablonski finished his Ph.D. disser- 
tation under Novikov on the topic of completeness 
criteria for boolean and many-valued logics. He be- 
came interested in such topics as representation of 
boolean functions by switching circuits, minimization 
of disjunctive normal forms, coding, automata, etc. 
The seminars of Liapunov and Yablonski at Moscow 
University attracted many students and scholars and 
soon became important centers of research in these 
new and exciting areas. At that time, after completing 
my Ph.D. under Novikov, I held a position in the 
Pedagogical Institute of Penza, a provincial city east 
of Moscow, and I was happy to join the cybernetics 
community through correspondence and visits to Mos- 
cow. The general atmosphere within this fresh and 
energetic community was very friendly, and I bene- 
fited much from it. 

Clearly, minimization of circuits and disjunctive 
normal forms, choice of optimal codes, etc., become 
trivial tasks as soon as perebor is allowed. It is there- 
fore not surprising that the perebor subject came to 
light, especially in connection with Shannon’s work 
on the complexity of switching circuits. I learned about 
this work in a detailed letter from Yablonski, who 
informed me about the seminar. This episode is char- 

t Input ---f 

X R Y x 

Y 

cl-:;::: 

Y P X Y 

t output -+ 

Circuit Q, Circuit f12 

Figure 1. 
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acteristic of the kind and thoughtful relations within fact, by means of some refinedperebor, the values L(2) 
the cybernetics community at that time. Let me recall = 4, L(3) = 8, L(4) = 13 were computed, but L(5) is 
some notations and facts concerning this topic. still unknown. On the other hand, Shannon’s theorem, 

A switching circuit Q is essentially an undirected later improved by Lupanov (1958), states: 
graph labeled by boolean variables and their nega- 
tions, with a designated input and a designated output L(n) - ; (1) 
vertex, as in Figure 1. The paths in Q from its input 
vertex to the output vertex induce conjunctions of where “-” means asymptotic equivalence. 
variables and/or their negations. Hence the whole Since the function an/r2 is easy to compute, no 
circuit is associated with a boolean function-the dis- perebor is needed in the first version of Task 2 if the 
junction of these conjunctions. This function is said asymptotic approximation of L(n) is allowed instead 
to be realized by the circuit; for example, for the of its exact value. For the second version of Task 2, it 
circuits RX and R2 from Figure 1, the associated dis- is not clear how to manage without perebor even in 
junctions of conjunctions are, respectively, the less strict case when an f is to be produced with 

xy V Zji and yx V yyji V 27x V 53 L(f) merely close to L(n). 
From 1953-1954 Yablonski emphasized the conjec- 

Therefore, they realize in fact the same function, ture that even in this less strict case and in some other 
which is tabulated in Figure 2. As usual, a boolean 
function of n arguments will be identified with a 

related tasks, the use of perebor is inevitable. Finally, 
he claimed the proof of the conjecture (Yablonski 

binary string of length 2”-namely, the value column 1959a). Before we continue this topic, let us recall 
in its table (in this case, the string 1001). Additional some details concerning Shannon’s lower bound for 
notations are: L(n). 

a(Q) The function associated with (realized by) Let P;(n), P,‘(n) partition P(n) into “simple” and 
the circuit Q. 

L(Q) The complexity of circuit Q (i.e., the number 
“complex” functions-specifically, 

of edges in the graph). 
L( f ) The complexity of the function f (i.e., min 

f E P;(n) w L(f) < z (1 - e) 

W(Q) : @(Q) = fl). and 

P(n) The set of all boolean functions of n argu- f E P,‘(n) w L(f) L ; (1 - I) 
ments. 

L(n) max (L(f) : f E P(n)]. Let IVI denote the cardinality of a set V. 
The following tasks arise quite naturally. Then, for each fixed E > 0, as n + ~0 

Task 1. Given an arbitrary Boolean function f(xl, 
GA 

IP;( n)l IWn)l --, 1 . . . ) + 0 and - (2) 
1. First version. Compute L(f), the complexity of IP( n)l @Yn)l 

the function f. Hence each I > 0 induces a splitting P, , PZ of the 
2. Second version. Find a minimal circuit Q that set of all boolean functions, where P; z v P;(n) is 

realizes f; that is, @(a(Q) = f and L(Q) = L(f). the “thin” set of “simple” functions, and 
Task 2. Given an arbitrary natural n, Pa z K P,(n) is the “thick” set of “complex” func- 
1. First version. Compute L(n). tions. 
2. Second version. Find an f E P(n) such that L(f) There is some gap between the technical results of 

= L(n). Yablonski’s 1959 papers (1959a; 1959b) and their 
Clearly, Task 1 is solvable by perebor through the interpretation concerningperebor. Since these circum- 

set of circuits ordered with respect to their complexity, stances stirred both interest and controversy, I shall 
and so is Task 2 by an additional perebor through all try to reproduce the main points as accurately as 
the 2”” functions belonging to P(n). As a matter of possible; the interested reader is urged to consult the 

original texts if needed. Yablonski considered the fol- 
lowing task. 

X Y W,Y) Task 3. Construct a sequence MO of boolean func- 
0 0 tions 
0 A 

:, 
fad, f%l&), * . * , f0,(3tl,X% . . . , XJ, . . - (3) 

1 0 
1 1 1 such that for some subsequence 

Figure 2. Table of the function realized by both Q1 and QZ. uft,mnk) + 1 (4) 
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holds. 
Clearly, this is the same as to require that for each 

&>O 
M” f-l P: (4’) 

is infinite. 
Note that Task 3 is a weaker form of Task 2 (second 

version), and therefore its solution by perebor is ob- 
vious. As for a solution of Task 3 without perebor, 
Yablonski considers first the case in which one allows 
algorithms with random steps. Suppose that for each 
rz one constructs a function f(xi, . . . , x,) by throwing 
a regular coin to obtain a string of length 2”, which is 
taken as the value column of the function. Then an 
accurate estimate of the ratio IP;(n)l/lP(n)l in Shan- 
non’s theorem results in the following theorem. 

Yablonski’s Theorem. With probability 1, the se- 
quence of boolean functions obtained by the probabilistic 
algorithm above satisfies the conditions of Task 3. 

The interpretation is that probabilistic algorithms 
are able to solve Task 3 without perebor. For deter- 
ministic algorithms, Yablonski proposes that one need 
consider only algorithms satisfying some properties 
particularly connected to the Task 3 under consider- 
ation. These properties come from the argument that 
as soon as a circuit is constructed for some boolean 
function f, one can assume that implicit realizations 
are available for all functions obtainable from f by the 
following operations. 

1. Inserting and/or deleting dummy arguments. 
2. Permutation of arguments. 
3. Substitution of constants for some of the argu- 

ments. 
Definition 1. A class of boolean functions is inuar- 

iant iff it is closed under operations l-3. 
According to this motivation, the reasonable restric- 

tion to be imposed on algorithms for Task 3 is reflected 
in: 

Definition 2. An algorithm is regular iff it maps 
the set of natural numbers onto an invariant class of 
boolean functions. Then the main result is formulated 
as follows. 

Main Theorem. Each regular algorithm that con- 
structs a sequence MO (as required by Task 3) con- 
structs, in fact, all the boolean functions; such an algo- 
rithm is in fact a perebor of all the boolean functions. 

Since Task 3 requires exactly one function of n 
arguments for each n, the formulation above could 
seem inaccurately stated because each sequence that 
is closed under the operations of inserting and deleting 
dummy arguments will violate the italicized condition 
above. In fact, the assertion is about algorithms that 
construct the invariant closure of MO; the point is: 

the invariant closure of MO must contain 
all boolean functions (5) 

B. A. Trakhtenbrot l Perebor 

The intuition behind Yablonski’s interpretation of 
(5) is that any algorithm solving Task 3 must, in the 
process of generating MO, examine all the functions in 
the invariant closure of MO and therefore is doing 
perebor. 

Yablonski’s result aroused mixed~ feelings and re- 
actions. On the one hand, the impression was that 
some evidence (perhaps indirect) was given to the 
validity of the perebor conjecture. Moreover, since 
then many people (mainly his former students) were 
categorical in their opinion and made public declara- 
tions to the effect that Yablonski’s work was genuine 
proof of the perebor conjecture with respect to the 
task under consideration. On the other hand, there 
was criticism, and after some confusion this was my 
attitude as well. Even if we accept the hypothesis that 
an algorithm for Task 3 must in some sense “examine” 
all of the functions in the invariant closure, there is 
still an objection to Yablonski’s interpretation of (5): 
namely, perebor is an intuitive concept that seems 
clearly related to the difficulty of searching a large 
domain in a short time, and property (5) says nothing 
about the rate at which the boolean functions are 
“examined.” Indeed, it is easy to construct sequences 
satisfying (5) that are generated very rapidly-there 
is a Turing machine that prints out (the value column 
of) fn(%, . . * , x,) (of length 2”) for n = 1, 2, . . . at the 
rate of one bit per step, where 

fibA f&l, GJ, * - - , fn(% GA - * - (6) 

satisfies (5). So if property (5) is to be interpreted as 
implying perebor, we have found an easy way to do 
perebor-and this contradicts the essential idea that 
perebor is what is not easy to do. 

The main theorem is in fact contained in the follow- 
ing technical result of the paper. 

Let Q be an invariant class, Q(n) its subset consisting 
of n argument functions, and 

Ldn) E max L(f) for f E Q(n) (7) 

Then either Q is the set of all the boolean functions, or 
else 

L&) 
2” 

- a .---n for some constant 0 5 u < 1 (8) 

Note that in this formulation, no algorithm is men- 
tioned at all! 

The lack of direct connection between Yablonski’s 
result (8) and the feasibility of algorithms for Task 3 
looked somewhat strange, although the algebraic ar- 
guments (such as invariance) that led to interpreta- 
tions concerning perebor were not contested. In this 
context the paper of Yablonski’s student, Y. Zhuravlev 
(1960), is worth noting. Again, the title is about the 
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impossibility of solving some tasks by algorithms of a 
certain class. Unfortunately, the definitions in this 
paper are cumbersome, and I cannot discuss them 
here. Although perebor is not emphasized in the title 
nor in the text, some comparisons with Yablonski 
(1959a; b) are suggested. First, the tasks under consid- 
eration concern minimization of disjunctive normal 
forms; their trivial solutions by perebor are obvious. 
Second, locality conditions imposed on the allowed 
algorithms restrict access to information stored on the 
nodes of a graph, so that a thorough scan over the 
nodes of the graph is needed to collect the information. 
Finally, it has been hinted that this forced scanning 
gives evidence that perebor is inevitable. Therefore 
Zhuravlev’s approach could almost be given the same 
perebor status as Yablonski’s. 

Discussions focused on Yablonski’s approach for 
two reasons. 

1. The explicit and persistent claim that Yablon- 
ski had proved the perebor conjecture; as a matter of 
fact, that was mirrored in the title of the paper (Ya- 
blonski 1959a). 

2. The tasks of circuit minimization seemed to be 
more fundamental than minimal normal forms. Peo- 
ple were fascinated by some peculiarities of circuit 
size; indeed, for a long time these peculiarities inspired 
the research on perebor phenomena and related com- 
plexity problems. 

Let me explain in more detail the second point with 
respect to modification of Tasks l-3 that naturally 
came to light during the discussion. Suppose for a 
given E, we consider as in Shannon’s theorem the 
splitting into thin P; and thick P,‘. 

Task 4. For a given f, 
1. Existential version: Determine whether f E P,. 
2. Constructive version: If f E P,, produce a suit- 

able Q with L(Q) 5 (1 - e)(2”/n). 
In other words, the existential version of Task 4 is 

the decision problem for P, (and in fact for PZ as 
well). As before, the trivial solution is by perebor, and 
no way is known for doing it more efficiently. There 
seemed to be an additional reason to pay special 
attention to this task: because of the following “fre- 
quential and immunity effect” of the splitting 
P:, P,‘. On the one hand, there exist infinite subsets 
M” of the thin P; that are decidable by efficient 
algorithms; for example, ME z 

{Xl, Xl A x2, x1 A x2 A x3, . . . 1 

is decidable in real time by a finite automaton. On the 
other hand, the decision problem for the thick P,’ 
looks difficult (presumably because perebor is inevi- 
table, and the intuitive feeling is that the same holds 

for each infinite subset of P,‘. Recall that in recursion 
theory an infinite set is called immune if it does not 
contain any infinite recursive subset. Hence, by anal- 
ogy, the property of the thick set P,’ not to contain 
any “easily decidable” infinite subset could be char- 
acterized by some sort of immunity. This contrast 
between the thin but perebor-free (in the sense of 
including easily decidable infinite subsets) P: and the 
thick but eventually immune P,’ looked impressive 
and close to the essence of the problem. That is why 
Task 4 received special attention and for a long time 
was the main source of reflection on perebor. In par- 
ticular, it stimulated the search for alternatives to 
perebor via probabilistic and frequential algorithms 
that could utilize the density properties of the split- 
ting. 

Section 2. Algorithmic Complexity 

The events discussed in this and the next sections 
occurred in a decade that was remarkable in many 
aspects. In 1960 I moved to the Akademgorodok, the 
Academic Center near Novosibirsk, where, through 
the initiative and guidance of A. A. Liapunov, the 
Department of Theoretical Cybernetics was organized 
within the Mathematical Institute. Almost all the staff 
of the department were former participants in the 
Moscow seminars, mainly students of Liapunov and 
Yablonski. In general, the research areas were sched- 
uled in close collaboration with the Moscow group. In 
particular, research focused on complexity theory and 
related problems that had previously undergone rapid 
and intensive development under the influence of 
Shannon’s switching theory. Just at this time, a new 
approach to complexity problems, manifested as a 
fusion of combinatorial methods inherited from 
switching theory with the conceptual arsenal of the 
theory of algorithms, was also rapidly developing. In 
fact, two trends were developing: computational com- 
plexity and the complexity of algorithms. 

The first subject deals with the amount of compu- 
tational work that is expended in performing an al- 
gorithm. Typical measures of this complexity are func- 
tions such as time complexity t,&x) (the number of 
steps performed by an algorithm M on input x), and 
space complexity So (the size of memory the algo- 
rithm consumes when applied to input x). The second 
subject deals with the size of the algorithms (pro- 
grams) themselves; as in circuit complexity (but unlike 
computational complexity), the size is measured by a 
number-for example, the number of symbols in the 
program. As these trends were developing, my belief 
was growing that they would yield a natural basis for 
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the investigation of the perebor phenomena. More- 
over, my interest in computational complexity and the 
choice of special research topics were to some extent 
influenced by reflections about perebor. Although I 
have neither the intention nor the possibility to go 
fully into details about the development of complexity 
theory in the U.S.S.R., this is the right opportunity to 
make some points concerning the subject. 

First, investigations in computational complexity 
appeared in the U.S.S.R. as early as 1956-that is, 
earlier than in the West. G. S. Tseitin, then a 19-year- 
old student of A. A. Markov at Leningrad University, 
began to study the time complexity of Markov’s nor- 
ma1 algorithms and proved nontrivial lower and upper 
bounds for some concrete tasks. He also discovered 
the existence of arbitrarily complex O-l-valued func- 
tions (Rabin’s 1960 results became available in the 
U.S.S.R. in 1963). Unfortunately, these remarkable 
results were not published by Tseitin and appeared 
later without proofs in a survey (Yanovskaia 1959). 
Independently, I considered “signalizing functions”- 
a version of space complexity for computations of 
recursive functions (Trakhtenbrot 1956). Neverthe- 
less, these episodes did not receive any serious contin- 
uation and development until the 1960s. 

In May 1962, I met Y. M. Barzdin for the first time. 
After graduating from the Latvian University in Riga, 
he came to Novosibirsk as my postgraduate student 
in automata theory. He quickly became my friend and 
main partner in research on computational complex- 
ity, and soon other people joined us, mainly students 
of the Novosibirsk and Latvian universities. This is 
how research on computational complexity started in 
Novosibirsk; a new young generation arose, and I had 
the good fortune to work with these people over a long 
period. It is not surprising that we were attracted by 
the same problems as our colleagues in the West (of 
course, we were working independently and in paral- 
lel), and we worked out almost the same techniques: 
complexity measures, crossing sequences, diagonali- 
zation, gaps, etc. All of these ideas arose quite natu- 
rally; we became most excited, and they evoked in us 
enthusiasm similar to that described by Hartmanis in 
his historical account (1981). 

On the other hand, we were upset by the deteriora- 
tion in our relations with the “classical” cybernetics 
people, mainly Yablonski. Their attitude to the intro- 
duction of the theory of algorithms into complexity 
affairs was quite negative. The main argument they 
used was that the theory of algorithms is essentially a 
theory of diagonalization, and therefore is alien to the 
complexity area that requires combinatorial construc- 
tive solutions. Hence they distrusted the role that 

could play in the perebor subject. These scientific 
divergences were likely intensified by the perebor con- 
troversy, especially because at that time Yablonski 
attained influential positions in the bodies that dealt 
with coordination and control of mathematical inves- 
tigation.* 

In the summer of 1963, during a visit by A. N. 
Kolmogorov to the Novosibirsk University, I learned 
in more detail about his new approach to the com- 
plexity of finite objects and the development of the 
concepts of information and randomness by means of 
the theory of algorithms. In the early cybernetics 
period, it was already clear that the essence of the 
problems with the minimization of boolean functions 
did not depend essentially on the particular models of 
switching circuits that were used to compute them; 
any other natural class of “schemes,” and ultimately 
any natural coding of finite objects (say, finite texts), 
should be expected to exhibit similar phenomena. 
Now, unlike the former pure combinatorial ap- 
proaches, the discovery by Kolmogorov (1965), and 
independently by Solomonoff (1964) and Chaitin 
(1966), of optimal coding for finite objects happened 
in the framework of algorithm and recursive function 
theory. According to this theory, the complexity of a 
text x is to be interpreted as the length of the shortest 
binary string p containing all the information that is 
necessary for recovering x with the help of some fixed 
decoding algorithm. Another related approach was 
developed by Markov (1964) and Kuzmin (1965). 
What seemed to be especially exciting was the inter- 
action of these ideas with the perebor tasks-mainly 
with Task 4 from Section 1. 

First, let us recall in more detail some notations and 
facts. Given a computable mapping (apartiul recursive 
function) u of binary strings (codes) into binary 
strings (texts, finite objects), the complexity K,(X) of 
x with respect to the decoding algorithm u is defined 
as 

K 
u 

(x) = Jmin P(P), uo?) = x 
100, if such a p does not exist (9) 

Each p for which u(p) = x holds is called a code or 
program by means of which u recovers X. For example, 
the complexity L(f) of a boolean function f as defined 
earlier corresponds essentially to the decoding algo- 
rithm that recovers boolean functions from circuits. 

* This was a time of rapid degradation of the moral climate within 
the Soviet mathematical community, which also affected the “com- 
putational complexity” people. Among many examples, Levin was 
denied his Ph.D. on the basis of political accusations. Dekhtiar’s 
Ph.D. award was seemingly plagued by anti-Jewish feelings: the 
dissertation was failed, although this decision was reconsidered after 
protests by prominent mathematicians. Barzdin’s doctorate was 
obstructed for many years because he didn’t share some of the 

computational complexity and algorithm complexity scientific preferences of Yablonski. 
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Clearly, this definition strongly depends on the par- First (a minor point), the complexity measure L(f) 
titular decoding algorithm. The following remarkable takes into consideration only the number of edges in 
fact (by Kolmogorov and Solomonoff), however, per- the graph, deliberately ignoring its topology. There- 
mits an invariant definition of complexity in algo- fore, in contrast to JJ;, which refers to the length 
rithmic terms. P(X), in the definition of P, the size 2”/n is used 

There exists a partial recursive (PR) mapping u0 instead of 2”, the length of the value column for f(xl, 
(called optimal) such that for any other partial recur-, . . . , x,). 
sive mapping u The second point is the essential one. In the switch- 

Ku,(x) 5 K,(x) + constu (10) ing model (as in other known combinatorial models), 

Hence, up to additive constants all optimal codings 
the decoding @ (unlike the invariant decoding u,) is a 

are equivalent. Suppose that some optimal coding u0 
total computable function; moreover, it is easy to com- 

is selected once and for all; one defines invariantly 
pute. As a consequence, the complexity L(f) is com- 

(up to an additive constant) the complexity of x to be 
putable, while K(r) is not. Hence, in Task 4 and in 
its genuine analogies, one should expect “immunity” 

K(x), omitting the subscript uO. 
Now let us adapt to our notations some facts proved 

to mean “hard computability” of all the subsets in- 
stead of failure of recursive enumerability. The remedy 

by Kolmogorov that sound like a natural counterpart 
of the phenomena concerning perebor we discussed in 

was to consider complexity with respect to decoding 

Section 2. They confirm both the significance of Task 
functions of bounded complexity; for example, for a 

4 and the belief that Kolmogorov’s invariant algo- 
given total computable function g and complexity 

rithmic approach was on the right track for theperebor 
measure p (say time or space), the related complexity 
is 

topics. 
Fact A. K(x) I P(x) + const E(x) z min {P(p) :.u(p) = x A pubI 5 g@)l(ll) 

Fact B. Consider the splitting r]: f’, fl; induced by Again, invariant complexity and a suitable splitting 

x E ng z K(x) 5 (1 - E) P(X) 
a;, 7rz can be considered where 

7r, = (x : Kg, (x) 5 (1 - E) P(X)] 02) 
Then fl; is thin and nc+ is thick (in the same sense 

as for the splitting P:, Pa in Task 4). Then the analog of Task 4 will look as follows. 

Fact C (Immunity). Let f be an arbitrary total Task 5. 

recursive mapping from natural numbers into natural 1. Existential version. For arbitrary x decide 

numbers, such that whether x E ?r;, 

lim sup f = co 2. Constructive version. If the answer is affirma- 

Then the set 
tive, produce a code p that verifies it. 

Our Novosibirsk-Riga group maintained a perma- 
A Z Ix I K(x) 5 f(P(x))) nent interest in algorithms and randomness. This 

is recursively enumerable, and if its complementary interest was partially inspired by the investigations of 

set 1A is infinite, it does not contain any infinite perebor in the cybernetics period. 

recursive subset. In particular, II, is immune. Many algorithmic problems encounter essential dif- 

Fact D. Let MO be an infinite sequence of binary ficulties (nonexistence of algorithms or nonexistence 

strings of feasible ones), so the natural idea arises to use 
devices that may produce errors in certain cases. The 

Xl, x2, . . * ) xn, . . . only requirements are that the probability or fre- 
such that K(x,) / P (x,) + 1. Then the closure of MO quency of the errors not exceed some acceptable level 
by including all substrings of strings in M” coincides and that the procedures are feasible. In the framework 
with the set of all binary strings. of this general idea, two approaches caught our atten- 

Clearly, the first three facts exhibit a precise version tion: probabilistic algorithms and frequential algo- 
of the somewhat vague “frequential effect” and “im- rithms. It is assumed here and later that in the prob- 
munity phenomenon” that came to light in connection abilistic case a device that produces zeros and ones 
with the perebor Task 4. Further, Fact D is nothing with equal probabilities is available. Leuw, Moore, and 
but a version of Yablonski’s main theorem formulated Shannon (1956) defined the notion of probabilistic 
in general terms of optimal coding instead of special algorithms and proved the negative answer for the 
coding (of boolean functions) by switching circuits. question: “Is it possible to compute by a probabilistic 
Side by side with these analogies, the following pecu- algorithm a function that is not computable by com- 
liarities of the switching model are worth noting. mon (deterministic) algorithms?” 
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Frequential algorithms are suggested by the “fre- As the proof is a straightforward consequence of the 
quential effect” related to the perebor Tasks 4 and 5. thickness of P: (that is, of the fact that 
For example, the solution of Task 4 (existential ver- I P,‘(n) I / I P(n) I + l), it can be applied as well to 
sion) can be approximated (with practically no com- the set flz from Fact C. Therefore, obviously, 3 a 
putational work) with limiting frequency 100 percent probabilistic algorithm M such that tl E > 0, it is true 
by always returning the answer “No.” that 

The essential features of a frequential algorithm M 
M enumerates with probability 1 a set MO of strings 

are generally as follows. 
1. M is deterministic, but each time it is applied, 

such that 

it consumes a whole suitable sequence of inputs M” fl HZ is infinite (14) 
instead of an individual one and works out the 

Because the sets I’Ic’ are immune (see Fact C), it 
corresponding sequence of outputs. 

2. The frequency of the correct outputs must ex- 
seems that the concern should be with the more subtle 
question: “Is it possible to enumerate probabilistically 

teed a given level. 
Clearly, varying the specification of suitable se- 

an infinite set M” that satisfies MO C I’Iz instead of 
1 M” n n ,’ 1 = ccl? It turns out that all of the nz are 

quences and the acceptable frequency level, one can 
get different models of frequential algorithms. From 

among the immune sets R for which Barzdin’s theorem 
holds. Hence, in fact, Ve > 0, V 01> 0, 3 a probabilistic 

one survey (McNaughton 1961) I learned about such 
a peculiar model and soon realized that as in the 

machine M such that 

probabilistic case, it is impossible to compute func- M enumerates with probability > CY an infinite 
tions that are not computable in the usual sense. Our 
efforts were then attracted by the following questions. 

subset MO C nZ (15) 

1. Is it possible to compute some functions by I should like to summarize the preceding discussion 
means of probabilistic or frequential algorithms as follows. The investigations in the cybernetics period 
with less computational complexity than deter- put forward three main facts concerning the perebor 
ministic algorithms require? topics with respect to switching circuits: (1) the fre- 

2. What reasonable sorts of problems (not neces- quential immunity effect, (2) the avoidance of perebor 
sarily computation of functions) can be solved via probabilistic algorithms, and (3) Yablonski’s per- 
by probabilistic or frequential algorithms more ebor interpretation of regular algorithms. 
efficiently than by deterministic ones? Do prob- The algorithmic approach to complexity placed 
lems exist that are solvable by probabilistic or them in their proper perspective. It turned out that 
frequential algorithms but not by deterministic they reflect some interesting phenomena related to 
algorithms? optimal coding of finite objects; but by themselves 

Papers by Trakhtenbrot (1973) and Barzdin (1969; these phenomena do not yet imply any conclusions 
1970) give some idea about the investigations in these concerning the perebor conjecture. Hence, the further 
areas and contain further references. Here I shall investigation of the conjecture in the framework of 
confine myself to quoting one theorem by Barzdin algorithmic complexity seemed to be a vital question. 
illustrating that for some formulations of problems 
one can achieve more with probabilistic machines than Section 3. Perebor and Complexity 
with deterministic ones. This theorem is based on a 
precise definition of the statement, “A machine M The development of algorithmic complexity created a 
that enumerates with probability p a set that has the favorable background for alternative approaches to 
property Q.” It claims: “There exists an immune set the perebor topics. The general idea was that one has 
T such that for any CY < 1 there exists a probabilistic to take into account the computational complexity of 
machine M that enumerates with probability > 01 an perebor algorithms. Therefore, the inevitability of per- 
infinite subset of R.” ebor should mean the nonexistence of algorithms that 

Let us examine the relation between this theorem are essentially more efficient. Of course, this general 
and Yablonski’s probabilistic approach to the elimi- idea does not determine beforehand some other im- 
nation of perebor in Task 3. Recall that Yablonski’s portant details; for example: (1) What complexity 
theorem essentially claims that 3 a probabilistic al- measure is to be preferred-time complexity, space 
gorithm M such that V c > 0, it is true that complexity, or something else? (2) The complexity of 
M enumerates with probability 1 a set MO of boolean what kind of computation has to be estimated-an 
functions such that absolute computation or a relative one (i.e., a reduc- 

M” n PZ is infinite (13) tion)? (3) What should be the meaning of the claim 
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that one algorithm is essentially more efficient than in practically no space or time with frequency ap- 
the other? proaching one by a constant function equal to one. It 

It is not surprising that in the period under consid- is worth noting that Meyer and McCreight found 
eration, there were different attempts to explain per- similar results (1971). They related these results to 
ebor phenomena in terms of computational complex- the construction of pseudorandom sequences, as was 
ity, The first one (Trakhtenbrot 1965) deals with space also done independently by Agafonov (1969). In my 
complexity; the aim of the paper is explicitly declared paper, the main point was in the following conclusion. 
in the introduction. Given a space function Cp and a thin regular set R of 

Their main meaning-and this is just reflected in the binary strings, there exists a recursive set of binary 
title [“Optimal Computations and Yablonski’s 
Frequential Effect”]-is in their relation to a general 

strings r’ that satisfies the conditions: 
1. l?+ is thick. 

phenomenon to which Yablonski was the first to pay 
Yablonski elaborated a special system of 

2. Its complementary set I‘- includes R as a subset. 
attention.. . . 3. Cp is optimal on l?+. notions (invariant classes of boolean functions, regular 
algorithms, etc.) . . . and proved important theorems in In other words, although I’- is thin, it contains an 

which one can find some indirect confirmation of his easily decidable subset-namely, the regular set R- 

conjecture with respect to the concrete model he whereas the thick complementary I’+ is P-immune. 
considered. . . . Further, the comparison of the splitting I”, T- with 

In this paper another approach is suggested which is the splitting P,“, P; in Task 4 is suggested. 
based on the estimate of computational complexity, 

It is easy to see that there exists a Turing machine specifically-of space-complexity. The paper does not 
M contain results that directly affect the concrete model of perphor, that works as follows: given a string of length 2” 

Yablonski; it rather establishes (by suitable on its tape (i.e., the code of a boolean function 

diagonalization) the existence of such models, for which f(G, . . . ,xn)), Mpszrrbor computes on the same zone of the 

even some generalized form of Yablonski’s conjecture tape the value L(f) by the trivial perebor, and checks if f 

holds. belongs to P;. This fact could be interpreted as a 

The technical results of the paper are about con- confirmation of Yablonski’s conjecture, because the 

structions of O-l-valued functions (predicates) I’(X), 
space-complexity %‘,,c376,b,r of Mperrbor is indeed optimal on 
P:. However in this case, such an interpretation is 

with x being a binary string, that are hard to compute. 
An additional point is that the complexity of lY as a 

trivial and is not rich in content, because for each string 
X, (Pperebor equals P(X), the length of the string. The point 

whole and/or the complexity of the set I’+ = (X 1 I’(x) is that tape estimate is too rough for moderately 
= 1) from the splitting T-, I‘+ it induces, is precisely complex algorithms; and therefore it seems that in such 
characterized (hence the term optimal computations) cases, time-complexity is more suitable. On the other 
by the space function P required to compute them. hand, the theorem shows that not only for the (Pperebor 

Definition above, but for an arbitrary space function ‘P, it is possible 

1. P is optimal on I‘+ (respectively, r-1 iff: to create a similar splitting; and what is more, the 

(a) There is a computation of the whole T with regular set R is a subset of I’;. 

space complexity Cp. Note. In Trakhtenbrot (1973b) such a splitting for 
(b) P-hardness: For each computation of T with an arbitrary space function Cp is described via the 
some space complexity $, there exists a constant following modification of the splitting in Task 5: 
c such that Vx (x E T’ (respectively, I’-) + 1. In the definition of K{(X), the function pU is 
G(x) 2 ‘p(x)lc). assumed to measure space complexity. 

2. Cp is optimal on I’ iff it is optimal on both I’+ 2. I-I, = (x 1 KS(x) I (P(x)]. 
and I?. In this case the solution of the modified Task 5 by 

Remark. Note that P-hardness of I’+ implies also perebor is within the space complexity P, and P is 
P-hardness for arbitrary recursive subsets of I’+. optimal on II,‘. Unfortunately, this idea does not work 
Hence, the intuition under condition (b) is that I’+ for Task 5 in the case of time complexity. This is not 
(respectively, r-1 is P-immune. only because “tape complexity is too rough for mod- 

In the constructions under consideration, hardness erately complex algorithms,” as mentioned earlier, but 
of computation does not happen because of a “com- also because tape complexity is too rough to grasp the 
plex” or “random” pattern of zeros and ones in their gap between deterministic and nondeterministic com- 
successive values. In fact, for an arbitrarily slowly putations. Hence, it became clear that time complexity 
increasing recursive function A(n), one can choose r was to be used. 
such that the number of arguments of length n for Meanwhile, I began to feel that another interpre- 
which r equals zero (its census function, see below) tation of perebor was worth considering. Again, let us 
does not exceed X(n). Hence, r can be approximated look at how the computation of L(f) is performed by 
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perebor, through scanning all possible circuits and 
querying 

+(a,) = f ? (a(!&) = f ? . . . (16) 

until the first adequate circuit is discovered. Inciden- 
tally, in this situation checking +(Q,) = f is easy, and 
hence the inefficiency of the perebor algorithm as a 
whole results from the enormous number of cases that 
have to be checked. Now suppose that in some other 
task checking happens to be very hard, even in com- 
parison to the computational work needed for search- 
ing through the possible cases. Should we nevertheless 
identify the computational complexity of the perebor 
algorithm as the complexity of its “searching” com- 
ponent, neglecting the expensive “checking” compo- 
nent? A reasonable answer seemed to be “Yes.” In 
other words, it seemed that the essence of perebor is 
in the complexity of interaction with the “checking” 
mechanism, as opposed to the complexity of the check- 
ing itself. This can be formalized in terms of oracle 
machines or reduction algorithms; in this view, the 
inevitability of perebor is to be interpreted in terms of 
the computational complexity of the reduction pro- 
cess. This idea resulted in the following conjecture 
about the impossibility of eliminating perebor in the 
task of computing a function relative to its graph: 
Given a total function f that maps binary strings into 
binary strings, consider Turing machines to compute 
f that are supplied with the oracle G that delivers (at 
no cost!) the correct answers to question “f(x) = y?“’ 
Among them is a suitable machine Mperebor that incor- 
porates the perebor strategy appropriately and com- 
putes f(x) by addressing the oracle with the questions 

f(x) = B(O)?, f(x) = B(l)?, . . . ) 

f(x) = B(i)?. . . (17) 

where B(i) is the ith binary string in lexicographical 
order. Hence, in computing the value of f(x), the 
machine MPrebor spends about f”(x) steps, where f(x) 
denotes the natural number represented by the string 
f(x). I conjectured in 1966 that for a broad spectrum 
of functions f, no other oracle machine M can perform 
the computation essentially faster. As to the “graph 

predicates” G(x,y) z f(x) = y of such functions, it 
was conjectured that they would not be too hard to 
compute. 

Dekhtiar (1969) proved the conjecture for different 
versions of what “essentially faster” should mean. For 
example, it turns out that in many cases Mperebor is 
optimal up to a multiplicative constant; that is, for 

1 r,y may vary, but f is always the same function under considera- 
tion. 
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every other oracle machine M, there exists a constant 
C(M) such that 

Vx (tdx) 2 C(M) . f”(x)) (18) 

On the other hand, it is quite obvious that if nonde- 
terministic oracle machines are allowed, the compu- 
tation of the string f(x) is performable in P (f(x)) 
steps-that is, in just as many steps as one needs to 
write down the correctly guessed value of f(x). 

Clearly, there is a considerable gap between the 
lower estimate C . f(x) for deterministic machines 
and the upper estimate P (f(x)) for nondeterministic 
ones, because P u(x)) is approximately log(f( x)). In 
connection with this remark, it is worth noting that 
Dekhtiar’s construction, in particular, produces func- 
tions f that obey (18) and in addition have the follow- 
ing properties: 

1. f is polynomially increasing; that is, for suitable 
c and k, 

vx (P(f(x)) 5 c . (p(X))9 (19) 
2. P (f(x)) is not neglectably small in comparison 

with P(X). 

lim sup P(f(x))/P(x) # 0 (20) 

At that time, the terminology concerning P reducibil- 
ity and NP problems was not yet in use; nevertheless, 
it seems instructive to make some comments just in 
these terms. Property (19) implies that the function f 
is computable in polynomial time by a nondetermin- 
istic machine with the oracle G that supplies answers 
to questions “f(x) = y?” On the other hand, properties 
(18) and (20) imply that for no machine with the 
oracle G is the time complexity polynomial. Hence, 
relative to the oracle G, the function f is in NP - P; 
in other words, NP # P as far as computations with 
oracles are concerned for single-valued functions. 
Usually the “P = NP?” question is formulated in terms 
of set decidability (and not in terms of function com- 
putation as in the preceding). 14 is quite obvious, 
though, that f E NP - P implies G E NP - P, where 

(X,Y) E 6 Zf(x) 5 Y. 

To summarize, Dekhtiar’s construction includes the 
proof of the relativized version of the NP # P conjec- 
ture. For the first time, this version was explicitly 
announced by Baker, Gill, and Solovay (1975), to- 
gether with another theorem that claims the relativ- 
ized version of the NP = P conjecture. The intention 
was to give some evidence to the possibility that 
neither NP # P nor NP = P is provable in common 
formalized systems. As to my conjecture about the 
computation of a function relative to its graph and 
Dekhtiar’s proof, they had nothing to do at that time 
with the ambitious hopes to prove the independence 
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of the NP # P conjecture. As a matter of fact, I then appreciated in these spheres, but they did not produce 
believed (and to some extent I do even now) that the such a sensation as Karp’s work had in the United 
essence of perebor is adequately reflected by the com- States. In Novosibirsk we only learned about Levin’s 
plexity of such relative computations that use search- results in April of 1972. At this time Levin had just 
ing through the sequence of all binary strings. Hence, completed his Ph.D. thesis (under Kolmogorov’s guid- 
being confident that the true problem is being consid- ante), “On the Algorithmic Approach to Probability 
ered (and not its relativization!), I had no stimulant Theory and Information Theory.” In fact, the reason 
to look for models in which perebor could be elimi- for Levin’s visit to us that spring was to promote his 
nated. thesis, then under consideration in the Novosibirsk 

On the other hand, there was some impression that Institute of Mathematics. In connection with this 
Dekhtiar’s results might be improved and generalized promotion Barzdin arrived at the same time from 
with respect to the following two points. Riga. I remember that he called me from the hotel 

1. Complexity of the Graph. The construction by with excitement, saying, “Just now Levin told me 
diagonalization produced a predicate G(x,y) z about his new results; it is a turning point in the topics 
f(x) = y computable within exponential time, but it ofperebor!” During Levin’s lecture in our seminar, the 
seemed likely that one could manage with functions f audience recognized that something very important 
for which the graph G(r,y) is computable in polynom- was happening; in fact, we were witness to the start 
ial time. of the “NP era”! 

2. Ordering of the Strings. No justification was Levin’s interest in perebor was stimulated by two 
evident as to why one had to use in perebor the factors: (1) The earlier investigations and discussions 
ordering of strings fixed once and for all by lexico- on this topic in the U.S.S.R.; this is explicitly reflected 
graphical ordering as in (17) or by some other way. in the bibliography to his paper (Levin 1973), which 
On the contrary, it seemed natural that the ordering was submitted in June 1972. (2) The task of the 
must take account of x-that is, that it must vary as computation of Kolmogorov complexity under 
x varies. bounded time-that is, essentially the constructive 

Questions of this sort were still under consideration version of Task 5. 
when dramatic events occurred that threw a fresh Although Levin’s 1973 paper is laconic (as are Lev- 
light on the problem. In 1971 S. Cook and L. Levin in’s publications in general), the formulations are 
independently elaborated a new approach to the prob- absolutely crisp in the Russian original. Unfortu- 
lem that resulted in the discovery of complete NP nately, the English translation is awkward and con- 
problems. tains misrepresented and confusing formulations. 

Cook (1971) proved SAT to be NP complete; only [Note: The translation is reprinted in the Appendix 
after Karp (1972) showed many important combina- of this article.] Six tasks are considered, among them 
torial problems to be NP complete, were these ideas a part coinciding with Karp’s and a part being differ- 
and results fully appreciated and produced a real sen- ent; then their universality is stated in a form that is 
sation in the United States. This work became avail- somewhat stronger than in the sense of Cook-Karp. 
able in the U.S.S.R. no earlier than 1973. In any case, Naturally, the new approach promoted a revision of 
at the Conference on Complexity Theory and Devel- the former views on perebor and especially a reevalu- 
opment of the Foundations of Information Theory, ation of some questions and conjectures in the context 
dedicated to the 70th birthday of A. N. Kolmogorov of the fundamental “NP = P?” question. Conjecture 
(Tsakhkadzor, March 1973), the audience was still 1 on the complexity of the graph implies NP # P; 
ignorant about the brilliant contributions of Cook and therefore, it is not easier to prove than the original 
Karp. Meanwhile in 1971, Levin obtained similar re- conjecture NP # P. Let us confine ourselves to some 
suits, although he used somewhat different terminol- remarks concerning the status of Tasks 4-5 in view of 
ogy-for example, “universal perebor problems” in- the new situation. 
stead of “complete NP problems.” Clearly, the existential versions of Tasks 4-5 are 

Because in the West it is still not too clear exactly NP problems. The conjecture is that they are not 
what Levin did and when he did it, I feel obliged to solvable in polynomial time, and moreover that the 
give more details of this story. Levin reported his dense P,’ is immune in the following precise sense: 
results in 1971 in Moscow (Kolmogorov’s seminar at Pz contains no subset that is decidable in polynomial 
Moscow University and Markov’s seminar at the time. Note that neither in Levin’s and Cook’s papers, 
Computing Center of the U.S.S.R. Academy of Sci- nor in later works, were Tasks 4-5 proved to be NP 
ences) and in Leningrad (the Leningrad section of the complete. Moreover, in light of investigations started 
Steklov Mathematical Institute). The results were by A. Meyer and J. Hartmanis, it is highly unlikely 
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that they will be proved to be such for some time. 
These investigations concern the correlation between 
NP sets, thin sets, and thick sets; they remind us of 
the “frequential effect” of Tasks 4-5 that attracted us 
in the U.S.S.R. They culminated in Mahaney (1980), 
with the following result: if NP # P, then no complete 
NP set may be sparse. Here, sparseness of a set S 
means that the “census fuhction” X(n), defined as the 
number of binary strings in S of size up to n, is 
bounded by some polynomial of n. Note that in spec- 
ifying the “frequential effect,” we formerly used other 
versions of sparseness-for example, the density of 0 
in P; or, as in Trakhtenbrot (1965), the fact that for 
I’;, h(n) is bounded by some (arbitrarily) slowly in- 
creasing recursive function. 

Besides the NP machinery, Levin (1973) has an- 
other result (Theorem 2) that unfortunately did not 
attract the attention it deserved. Certainly, one reason 
was that people were too struck by the main result- 
the discovery of complete NP problems. Theorem 2 
deals with the constructive version of NP problems 
(see Introduction) and claims: 

For any perebor problem A (XJ) there exists an algorithm 
that solves it in time that is optimal up to multiplication 
by a constant and the addition of a number [that is 
polynomially] comparable with the length of z. 

Note that optimality is stated only for those X’S for 
which there exists a suitable y, and nothing is claimed 
for the other ones. (An open question promoted by 
Hartmanis is whether an algorithm exists that is 
optimal for both the affirmative and negative cases.) 
Unfortunately, there is no description of the optimal 
algorithm in Levin (1973), which is perhaps another 
reason that Theorem 2 was not fully appreciated. As 
a matter of fact, we never knew in Novosibirsk of 
Levin’s algorithm, and that is why Sazonov later pub- 
lished (1980) an algorithm of his own. Levin’s original 
idea as seen in Levin (1980) was that the optimal way 
to find the y for a given x was to search via perebor 
through the sequence of all binary strings. Unlike the 
“traditional” perebor, one has to abandon the fixed 
ordering of the strings (as, for example, in (17)) with 
respect to their increasing lengths; instead, the strings 
y are to be checked in the increasing order of Kt(y/ 
x)-the complexity of y relative to X, which is defined 
as follows. 

WY/x) Z minII + log L(w) : 4p,x) = ~1 

It equals the minimal sum of the length of the program 
p and the logarithm of the time it spends, including 
the time for checking A(x,y). Here, u performs the 
decoding relative to x, and, as in the definition of 
Kolmogorov complexity, it can be chosen to be opti- 
mal. 

B. A. Trakhtenbrot - Perebor 

Sazonov (1980) used a similar idea of “polynomially 
optimal” ordering of the strings to be checked. Hence, 
the original intuitive idea of perebor as a search 
through all the strings is rehabilitiated; moreover, 
perebor is proved to be optimal and in this sense 
inevitable. Of course, its precise computational com- 
plexity remains unknown; in nontrivial cases, it de- 
pends on the “NP = P?” question. 

Epilogue 

In the decade after the Cook-Karp-Levin discovery, 
the “P = NP?” problem became one of the most 
popular superproblems in theoretical computer sci- 
ence. It is beyond the scope of this paper to survey the 
respective development and the contributions of many 
outstanding computer scientists. I shall just make two 
remarks that are related to the story I have told. 

The first concerns the participants in the perebor 
controversy. Have their views changed? There is no 
evidence that this has happened. Clearly, the adher- 
ents of the algorithmic approach to complexity inter- 
preted the current developments in the area as a 
confirmation of their correctness. On the other hand, 
there was no formal reaction by their opponents on 
this topic, nor did they publish new results along the 
line of their own understanding ofperebor. Meanwhile, 
other changes occurred. Many of the people who were 
active earlier in complexity theory (including myself) 
moved to other research fields, particularly to what is 
called in the U.S.S.R. “theoretical programming.” 
Moreover, some of them “moved” in the literal sense; 
the participants of the story are now dispersed over 
different continents. 

The final remark is about independence results in 
computer science-a direction of research that seems 
particularly significant. Recall that the first attempt 
in this direction (Hartmanis and Hopcroft 1976) dis- 
covered that in any sufficiently strong axiomatic sys- 
tem Ax, some special version of P = NP is independent 
of Ax. Yet this version looked somewhat artificial; 
later efforts (De Millo and Lipton 1980; Sazonov 1980) 
were dedicated to direct and natural formulations of 
the original P = NP problem in the axiomatic systems 
under consideration. Actually, activities of this sort 
outgrew the primary “P = NP?” problem; they concern 
both the technical analysis of mathematical and logi- 
cal means and the more fundamental analysis of math- 
ematical abstractions that are relevant to computer 
science. 

It is worth noting that the importance of such an 
approach was advocated in the U.S.S.R. even prior to 
the “NP era.” As early as the 1950s Liapunov argued 
that, hard problems in theoretical cybernetics need an 
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analysis in the spirit of descriptive set theory and 
foundations of mathematics. In the late 1960s Barzdin 
supported similar arguments with respect to provabil- 
ity of nontrivial lower bounds for the complexity of 
computations. He conjectured that they may happen 
to be independent of the axioms that computer sci- 
entists really have in mind. 

Perhaps the most impressive repercussions of the 
impasse with the “P = NP?” problem are the inten- 
sified efforts to clarify the methods and axioms that 
computer science relies on or should rely on (see 
Joseph and Young 1981). I share the widely accepted 
opinion on the importance of this trend, and I hope 
that essential progress will be achieved in this area. 
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APPENDIX 

The following translation (0 Plenum Publishing Corpo- 7, 1972). The changes shown in brackets (-- means 
ration, reprinted here with permission) is from “Prob- delete; otherwise insert) are those suggested by Trakh- 
lemy Peredachi Informatsii, I’ Vol. 9, No. 3, July-Septem- tenbrot. Changes originally made by Levin are shown 
ber 1973, pp. 115- 116 (original article submitted June in boldface. 

BRIEF COMMUNICATIONS tial, and mathematicians nurture the conviction that 

UNIVERSAL [s SEARCH 
it is impossible to find simpler algorithms. That con- 

PROBLEMS 
viction has been reinforced by a number of profound 
arguments (see [l, 2]), but no one has yet succeeded 

L. A. Levin in proving it (for example, it has yet to be proved that 

Several well-known [w ] problems of the more time is required to find mathematical proofs 
“ [m] search” type are discussed, and it is proved than is required to test them). 
that those problems can be solved only in the time it If we assume, however, that there exists [in 
takes to solve any problems of the indicated type, in general at all] some (even if artificially formulated) 
general. [v] problem of the [m] search 
After the concept of the algorithm had been fully type that is unsolvable by simple (in terms of the 

refined, the algorithmic unsolvability of a number of volume of computations) algorithms, then it can be 
classical [w] problems was proved (includ- shown that many “classical” [seque&&] search prob- 

ing the problems of the identity of elements of groups, lems have the same property (including the minimi- 
the homeomorphism of varieties, the solvability of the zation problem, the proof-search problem, etc.). This 
Diophantine equations, etc.). These findings dis- objective comprises the [M main] results of 
pensed with the question of finding a practical tech- the present note. 
nique for solving the indicated problems. However, We say that functions f(n) and g( n) are comparable 
the existence of algorithms for the solution of other if for some k 
problems does not eliminate the analogous question, 
because the volume of work mandated by those algo- 

f(n) G (g(n) + 21k and g(n) s (f(n) + 2P 

rithms is fantastically large. This is the situation with We give an analogous interpretation to the term “less 
so-called [m] ([or] exhaustive) search prob- than or comparable with.” 
lems, including: the minimization of Boolean func- Definition. A problem of the m search type 
tions, the search for proofs of finite length, the deter- (or, simply, a [m] search problem) [is] a 
mination of the isomorphism of graphs, etc. All of problem of the following type: “For a given x find some 
these problems are solved by trivial algorithms entail- y of length comparable with the length of x such that 
ing the sequential scanning of all possibilities. The A(x, y) holds,” where A(x, y) is some property to be 
operating time of the algorithms, however, is exponen- tested by an algorithm whose operating time is com- 
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parable with the length of X. (Here we understand by r(x), p(y), and s(y) operating in a time comparable 
an algorithm a Kolmogorov-Uspenskii algorithm, a with the length of the argument exist such that 
Turing machine algorithm, or a normal algorithm; x Ah, p(y)) = W(x), y) and A(x, Y) z W(x), S(Y)) 
and y are binary words.) The corresponding quasi- (i.e., given the A-problem in X, an equivalent B-prob- 
[w] search problem is the problem of deter- lem in r(x) is easily constructed from it). A problem 
mining whether such a y exists. to which any [e] search problem reduces is 

We consider six problems of these types. The enti- called “universal.” 

ties with which they are concerned are encoded in a Thus, the substance of the proof of Theorem 1 is 
natural way by binary words. The particular choice of embodied in the following lemma. 
natural encoding is not significant here, since they all LEMMA 1. Problems l-6 are universal 
yield comparable code lengths. [e] search problems. 

Problem 1. A list [gene&~% determines] a finite set The method described here [clearly] provides a 
and a covering of that set by 500-element subsets. 
Find a subcovering having a prescribed cardinality 

means for readily obtaining results of the type of 
Theorem 1 and Lemma 1 for [v many] 

(determine whether such a subcovering exists). important [w] search problems. It still re- 
Problem 2. A table generates a partial Boolean func- mains, however, to prove the condition stipulated in 

tion. Find a disjunctive normal form of prescribed Theorem 1. A great many attempts have been made 
dimensions realizing that function in [the its] do- in this direction for some time now, and a number 
main [m] (determine whether such a DNF of interesting results have been obtained (see, e.g., 
exists). [3, 41). Of course, the universality of various 

Problem 3. Determine whether a given formula of (-1 search problems can be tab- 
the [gwe&tde propositional] calculus is deducible lished without solving the indicated problem. The 
or refutable (or, equivalently, whether a given Boolean following is provable in the system of Kolmogorov- 

formula is equal to a constant). Uspenskii algorithms. 

Problem 4. Two graphs are given. Find a homo- THEOREM 2. For any [w] 
morphism of one onto the other (determine whether search problem A(x, y) there exists an algorithm that 
such a homomorphism exists). solves it in a time that is optimal up to multiplication 

Problem 5. Two graphs are given. Find an isomorph- by a constant and the addition of a number compa- 

ism of one into the other (onto part thereof). rable with the length of X. 

Problem 6. Consider matrices composed of integers The author is deeply grateful to A. N. Kolmogorov, 

from 1 to 100 and a certain stipulation as to which , B. A. Trakhtenbrot, Ya. M. Barzdin [‘ytt;-f 

integers can be vertically adjacent and which can be AH&cm Alberton], and M. I. Degtyar’ for a reward- 

horizontally adjacent. When the outermost integers ing discussion. 

are given, continue them over the entire matrix, ob- 
serving the given stipulation. LITERATURE CITED 
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