
University of Virginia cs3102: Theory of Computation 4 December 2019

Exam 3 - Comments

True, False, or Unknown

1. For each of the following, circle one of the choices to indicate whether the statement is known to
be True, is known to be False, or Unknown if its validity depends on something that is either currently
unknown or not specified in the question.

Then, write a short justification to support your answer. When your answer is Unknown, your answer
should make it clear what unknown the validity of the statement depends on (for example, that it is
equivalent to a statement whose truth is currently unknown to anyone).

(a) The function, XOR : {0, 1}∗ → {0, 1}, which outputs the logical exclusive or of all the input bits, is in
class P.

Circle one:

True False Unknown

Justification (≤ 5 words):

We saw a finite automaton (linear time) that implements XOR.

(b) The function, XOR (from the previous question), is in class NP.

Circle one:

True False Unknown

Justification (3 symbols):

P ⊆ NP .

(c) If a function A in NP has an exponential lower bound (e.g., requires Ω(2n) time to compute), then no
function in NP-Complete can be computed in polynomial time.

Circle one:

True False Unknown

Justification (≤ 3 sentences):

If we prove that some A ∈ NP requires exponential time to compute, this means that P 6= NP and that
no function in NP-Complete can be computed in polynomial time.



cs3102 Fall 2019 2 Exam 3 - Comments

Proving Uncomputability

2. In this question, your goal is to show that the function REENTERS defined below is uncomputable.

Input: A string w that describes a Turing Machine.

Output: 1 if the machine described by w would re-enter its start state when executed on a
tape that is initially all blank. Otherwise, 0.

That is, a machine which computes REENTERS outputs 1 when the input describes a Turing Machine
which, when run on a blank tape, enters the start state as a result of some transition.

(a) Which strategy would show that REENTERS is uncomputable? (Circle one, no explication needed.)

Use a machine that computes
REENTERS to compute HALTS .

Use a machine that computes HALTS to
compute REENTERS .

(b) Employ the strategy you chose in the previous question to show that REENTERS is uncomputable.

We need to show that if there is a machine, MR that computes REENTERS , we can use MR to compute
HALTS . Recall that HALTS takes in a description of a Turing Machine w, and outputs 1 if w would halt
running on the empty tape, and 0 otherwise. (A variation on HALTS takes in both a machine description
and an input x, and outputs 1 iff the machine described by w would halt on input x. You could use either
verison here since we did not specific, but it is easy to convert between them by adding a sub-machine
that writes x on the tape to the description of the machine.)

So, our goal is to implement HALTS(w) as REENTERS(w′). We can do this by transforming the machine
represented by w into the machine w′ where the original start state in w is replaced by a new state sR,
which just transitions to the original start state of w. Every transition in w which would halt is replaced
with a transition to state sR. Since these are the only transitions to state sR, the machine w′ will only
re-enter sR if the machine represented by w would halt. Thus, the output of REENTERS(w′) is exactly
the necessary output of HALTS . Hence, with MR we could implement a machine MHALTS that computes
halts but just doing the input transformation described above and running MR on the reslting w′.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans


cs3102 Fall 2019 3 Exam 3 - Comments

Complexity Classes

3. For some function F : {0, 1}∗ → {0, 1}, given that each of the following is True, identify the first class
that F is guaranteed to belong to. We list the classes so each is a subset of the class to its right, so circle
the leftmost class which F must belong to. If it is not guaranteed to belong to any class, don’t circle
anything. Briefly justify your choice.

(a) There is an algorithm that computes F with running time in Θ(n5.5).

F ∈ TIMETM(O(n5 log n)) F ∈ P F ∈ NP

Justification (≤ 3 sentences):

We know F /∈ TIMETM(O(n5 log n)) since n5.5 grows faster than n5 log n which means there is no function
in Θ(n5.5 which is also in O(n5 log n).

We know F ∈ P since all functions in Θ(n5.5) are polynomials, so the running time of F must be in P.

(b) There is a function R ∈ TIMETM(O(n3102)) such that, for all x ∈ {0, 1}n that is a well-formed input to
3-SAT , 3-SAT (x) = F (R(x)).

F ∈NP-Complete F ∈NP-Hard F ∈ Computable

Justification (≤ 4 sentences):

We don’t know if F ∈ NP-Complete since that requires F ∈ NP and there is nothing here to allow us to
conclude that.

We do know F ∈ NP-Hard since there is a polynomial-time reduction that allows us to use F to compute
3-SAT , which is known to be in NP-Hard.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans


cs3102 Fall 2019 4 Exam 3 - Comments

Always, Sometimes, Never

4. For a function f : {0, 1}3102 → {0, 1} that can be implemented by a NAND circuit with s gates, which of
the statements that follow would be Always True, Possibly True (meaning there are some functions f for
which the statement is true and others for which is it false), or Never True (circle one option). Give a brief
statement to justify your answer.

(a) f is computable

Always True Possibly True Never True

Justification (≤ 5 words):

It can be implemented by a NAND circuit with s gates.

(b) f ∈ NP

Always True Possibly True Never True

Justification (≤ 5 words):

Any answer could be justified here.

Since f is a finite function, it is not in NP which is a subset of the {0, 1}∗ → {0, 1} functions.

We also accepted other answers that assumed a relaxed definition of NP to include partial functions. In
this cases, f ∈ NP since it is a finite function which can be computed in a fixed (not growing with any
input size) number of steps.

(c) There is some function g : {0, 1}3102 → {0, 1} that can be implemented using s + 10 NAND gates, but
cannot be implemented using s NAND gates.

Always True Possibly True Never True

Justification (≤ 3 sentences):

Because of the size hierarchy theory, we know this is true for some values of s. But, we also know that
it is not true for other values of s. For example, if s is large enough to compute all {0, 1}3102 → {0, 1}
functions, then there is no function g that cannot be computed with s gates but can be computed with
more gates.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans


cs3102 Fall 2019 5 Exam 3 - Comments

Constant Time

5. Show whether O(1) = Θ(1). (It is left up to you to determine if the two sets are equivalent, and provide
a convincing proof to support your answer.)

One important thing this question was testing is your understanding that O(1) and Θ(1) are both sets of
functions. We often use them in computing to talk about running times and other resources like memory
required to compute functions, but the notations themselves (and we provided the definitions on the
second page) are just defining sets of functions. The 1 in these notation is the constant function that
maps every natural number input to 1.

So, O(1) is the set of functions that grow no faster than the constant function and Θ(1) is the set of
functions that grow as fast as the constant function. Lots of functions grow slower than the constant
function — this just means that as the input increases, the output decreases. An example is f(n) = 1/n.
Hence, O(1) 6= Θ(1).

To show this more formally, we show (1) 1/n ∈ O(1) and (2) 1/n /∈ Θ(1).

(1) 1/n ∈ O(n): Choose c = 1 and n0 = 1. Then, ∀n > n0, 1/n ≤ 1. (In the given definition of O, this is
using g(n) = 1 and f(n) = 1/n.

(2) 1/n /∈ Θ(n): Since Θ(n) = O(n) ∩ Ω(n), we need to show 1/n /∈ Ω(n). This means that for any choice
of c and n0, we can always find an n that invalidates f(n) ≥ cg(n), which means finding an n such that
f(n) < cg(n). Substituting f(n) = 1/n and g(n) = 1, this is 1/n < c. For any choice of c, we can choose
n = d1/ce+ 1. (Since n ∈ N, we need the ceiling operator to round up to a natural number, and the +1 to
make sure the denominator exceeds 1/c to ensure the inequality holds.)

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans


cs3102 Fall 2019 6 Exam 3 - Comments

3-TAUT

We know that 3-SAT is NP-Complete, where 3-SAT requires determining whether there exists at least one
way to assign Boolean values to each variable in a 3-CNF formula so that the formula evaluates to True.

For this question we will show 3-TAUT is NP-Hard. This problem requires determining whether every
assignment causes a 3-DNF formula (see definitions page) to evaluate to True (i.e., no assignments will
cause the formula to evaluate to False).

6. Show 3-TAUT is NP-Hard.

To show a problem is NP-Hard, we need to show that an implementation of that problem could be used
to solve every problem in NP. This can be done by showing that an implementation could solve any one
problem in NP-Complete. As suggested by the problem, a straightforward reduction is to use 3-TAUT to
implement 3-SAT.

For 3-TAUT, the output is 1 iff all assignments of the variables satisfying the 3-DNF formula:

∀x0 ∈ {0, 1}, x1 ∈ {0, 1}, . . . , xn ∈ {0, 1}.P1(X) ∨ P2(X) ∨ · · ·Pk(X)

where each Pi is one of the clauses in the formula, Pi(X) = xi1 ∧ xi2 ∧ xi3 (the terms can also be negated).

For 3-SAT, the output is 1 iff there exists an assignment of variables that satisfies the 3-CNF formula:

∃x0 ∈ {0, 1}, x1 ∈ {0, 1}, . . . , xn ∈ {0, 1}.S1(X) ∧ S2(X) ∧ · · ·Sk(X)

where each Si is a CNF clause, Si(X) = xi1 ∨ xi2 ∨ xi3 (the terms can also be negated).

We can use De Morgan’s laws to turn CNF into DNF by negating the clauses. Then, as long as the DNF is
not a tautology, there is some satisfying assignment. So the output of 3-SAT is the negation of the output
of 3-TAUT to the negated formula.

For example, the CNF formula (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) is satisfied iff this DNF formula is not a
tautology: (x̄1 ∧ x2 ∧ x̄3) ∨ (x1 ∧ x̄2 ∧ x3).

7. 3-TAUT is not known to belong to NP. Give an intuitive reason why it is difficult to show that 3-TAUT
belongs to NP.

It seems difficult to show that 3-TAUT belongs to NP since the output 1 means there is no assignment of
variables that makes the formula false. There is no obvious witness for this (unlike for 3SAT where the
satisfying assignment is a witness). It is not known if there is a polynomial time witness for 3-TAUT, and
finding one would solve a longstanding open problem.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans

https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

