University of Virginia ¢s3102: Theory of Computation 6 November 2019

Exam 2 Practice Problems

These problems are provided to help you prepare for Exam 2.

Exam 2 will be Wednesday, 6 November at the normal class time in the normal classroom. We will aim
to start the exam right at 3:30pm, so you will benefit from arriving early for class Wednesday to be settled
and ready to start the exam.

Exam 2 will cover material from Classes 1-16 (through 28 October), Problem Sets 1-6, and the textbook
chapters 0-6 and parts of 8 (8.1-8.4). Most of the questions on the exam will cover topics that you will
have seen in at least two different places (e.g., both in class and on a problem set, or in multiple classes,
or at least both in the textbook and in class or a problem set). The exam will emphasize material that was
not covered by Exam 1 (so focusing on the material on problem sets 4-6), but will also build on material
earlier in the class, and you should be surprised if it does not include induction proofs. These practice
problems are not necessarily comprehensive, but should give you a good idea of the kinds of problems
you will see on the exam.

As areminder from the syllabus, you may construct a one-page (letter-size, two-sided) reference sheet
for use during the exam, but all other resources are forbidden (no internet, textbook, other humans,
magnification instruments, etc.). We expect that students will benefit from thinking about what to put
on your reference sheet in preparing for the exam, and you may work with anyone you want (including
other students in the class) to prepare a reference sheets together.

Asymptotic Operators

Problem 1 Asymptotic Operator Definitions

For each pair of functions, f and g, indicate which of these are true: f € O(g), f € Q(g), f € O(g),
f€0(g), f € o(g) (see Problem Set 4 for the definitions of O and o). You should be able to support your
answer with a clear argument, using the definition of the asymptotic operator.

Problem 2 Properties of Asymptotic Operators

(@) Prove that for any function f, f € O(f).

(b) Prove that for any functions fi, f2, and g, if f1 € ©(g) and f2 € ©(g), then f, € O(g) where f, (n) :=
fi(n) + fa(n).



¢s3102 Fall 2019 2 Exam 2 Practice Problems

Counting Functions

Problem 3 Hard Functions are “Randomish”

Prove thatif ' : {0,1}" — {0, 1} is a function that cannot be computed by a NAND-CIRC program with

fewer than 2~ lines, the number of inputs for which F(z) = 0 must be between 15255z and 2" - 755

1000n
(Hint: how hard would it be to implement a function that outputs 0 for all inputs? For all but one input?)

Problem 4 Size hierarchy theorem for multibit functions (TCS Exercise 5.6)

Use the ideas of Remark 5.4 to show that for every e > 0 and sufficiently large s, n, m,

‘SIZEYL m(s) | < 2(2+e)s log s+n log n+m log s
Conclude that the implicit constant in Theorem 5.2 can be made arbitrarily close to 5. (Hint: Using the
adjacency list representation, a graph with » in-degree zero vertices and s in-degree two vertices can be

represented using roughly 2slog(s + n) < 2s(log s + O(1)) bits. The labeling of the » input and m output
vertices can be specified by a list of n labels in [r] and m labels in [m].)

Problem 5 Tighter counting lower bound (TCS Exercise 5.7)
Prove that for every 0 < 1/2, if n is sufficiently large then there exists a function f : 0,1" — 0, 1 such that

f&SIZE, (5%) (Hint: Use the results of the previous problem and the fact that in this regime m = 1
andn < s.)

Size Hierarchy

Recall that SIZE,,(s) is the set of all n-input Boolean functions that can be implemented with s or fewer
NAND gates.

Problem 6 Provethat SIZE3(1) C SIZEs(2).
Problem 7 Prove that SIZ E3(3102) = S1ZE3(4102).

Problem 8 (x) What is the largest k such that SIZ Ey(3102) = SIZ E}(4102)?

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans


https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

¢s3102 Fall 2019 3 Exam 2 Practice Problems

Turing Machines and Computability

Problem 9 Naturals are Computable

Prove that every natural number is computable, by showing how to define a Turing Machine, M, that on
a blank input tape outputs a representation of the natural number & for any £ € N. (You can decide how
a natural number should be represented, but should be able to precisely describe M}..)

Problem 10 Increment Machine

Describe a Turing Machine that takes as input a tape containing the binary representation of a natural
number, n, and outputs a tape containing the binary representation of n + 1. You machine should work
for any input, n € N, and you should be able to explain how many steps your machine will take in the
worst case for an input of length & bits.

Problem 11 Fading Tape Machine

Consider a variation of a Turing Machine where instead of writing symbols on a tape (where it is assumed
the same symbol can always be read back), we have an infinite beach instead of an infinite tape. Each
step the machine takes, symbols that were written on the tape fade away as the sand is blown by the wind.
To keep things simple, assume the input symbols are written in a way that does not fade (so the machine
can still process any length input), but all symbols written by the machine are perfectly readable for 100
steps, but are no longer readable after the machine has taken 100 steps since it was written.

How powerful is a fading tape machine?
Problem 12 Input Reversing

Prove that if ' : {0,1}* — 0,1 is computable, then the function which takes the input in reverse
direction, Frpy{0,1}* — 0,1 is computable. Frgy(x) = F(reverse(z)) where reverse(xiza...x,) =
InIpn—-1...T271.

Problem 13 Oblivious Turing Machines (challenging) (TCS Exercise 6.8)

Define a Turing Machine M to be oblivious if its head movement are independent of its input. That is,
we say that M is oblivious if there exists an infinite sequence MOV E € {L,R,S}* such that for every
x € {0,1}*, the movements of M when given input = (up until the point it halts, if such point exists) are
given by MOV Ey, MOV E1, MOV E;, . . ..

Prove that for every function F' : 0,1* — 0, 1%, if F' is computable then it is computable by an oblivious
Turing machine.

(Hint: R, LLR,R,L,L, R, R,R, L, L, L, ...)

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans


https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

¢s3102 Fall 2019 4 Exam 2 Practice Problems

Problem 14 Bounding Busy Beaver

Recall our definition of BB from Problem Set 5:

Definition 1 (Busy Beaver Problem) Foranyn € N, define BB>(n) as the maximum number of steps for
which a Turing Machine with n states and 2 symbols can execute and halt, starting from a blank tape.

Consider instead, this definition:

Definition 2 (Busy Beaver Bound) Foranyn € N, define BEYONDDB»(n) as the index of a tape cell that
cannot be written to by any Turing Machine with n states and 2 symbols that eventually halts, starting
from a blank tape.

So, we can think of BEYONDB(n) as an upper bound on the furthest tape cell that can be written by the
machine. Since it is an upper bound, it would be correct to output any value larger than the furthest cell
that can be written to by any halting Turing machine, thus there is an infinite set of functions that satisfy
the BEYONDB, definition.

(a) Prove that there is some z € N which is a correct value of BEYONDB,(n) for any n € N.

(b) Prove that computing any BEYONDB, function is uncomputable.

https://uvatoc.github.io/ Creative Commons BY-NC 4.0 Nathan Brunelle and David Evans


https://uvatoc.github.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.cs.virginia.edu/~njb2b/
https://www.cs.virginia.edu/evans

